Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

0318

Accredited to ISO/IEC 17025:2017

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

1 Pride Park View, Victoria Way, Pride Park, Derby

DE24 8AN

Tel: +44 (0)1332 867 700 E-Mail: sales@comech.co.uk Website: www.comech.co.uk

Contact: Mr K Pallett

Calibration performed by the Organisation at the locations specified

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address Metrology Division Calibration House Castings Road Derby DE23 8YL	Local contact	<u>Dimensional</u> <u>Torque</u>	A
Address 1 Pride Park View, Victoria Way, Pride Park, Derby DE24 8AN	Local contact	Electrical Humidity Pressure Temperature	В

Site activities performed away from the locations listed above:

Location details	Activity	Location code
The location must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer	Electrical Pressure Temperature	С

Assessment Manager: PC Page 1 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service
2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Calibration and Measurement Capability (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
RANGE IN MILLIMETRES AND UNDERTAINTY IN MICROMETRES UNLESS OTHERWISE STATED				
DIMENSIONAL				
Micrometers External	BS 870:2008, 0 to 600 Traverse of micrometer screw Flatness of anvils Parallelism of anvils Alignment (Zero) Setting, 0 to 25 (Zero) Setting, 25 to 600	2.6 1.0 1.5 4.3 1.0 1.0 + (8.0 x length in m)		A
Internal	BS 959:2008, 0 to 600 Traverse of micrometer screw (Zero Setting) and Extension Rods	2.8 1.0 + (5.0 x length in m)		
Depth	BS 6468:2008, 0 to 300 Traverse of micrometer screw Flatness Parallelism Squareness of rods Axis of rotation of rods (Zero Setting) and Extension	4.8 1.0 2.3 7.7 7.7 1.0 + (5 x length in m)		
Vernier gauges (inc. digital and dial)	rods			Α
Caliper	BS 887:2008 0 to 600 Linear error Flatness Parallelism Squareness Coplanar of jaws	10 + (30 x length in m) 1.0 1.3 8.4 8.3		
Height	BS 1643:2008, 0 600 Linear error Flatness of measuring jaws Size of measuring jaw Flatness of base Parallelism of jaw to base	10 + (30 x length in m) 0.40 3.2 1.1 1.6		
Depth	BS 6365:2008, 0 to 300 Linear error Flatness and parallelism	10 + (30 x length in m) 4.0		
Dial gauges and dial test indicators	0 to 50 BS 907:2008 and BS 2795:1981	3.6		A
Surface texture of Gauges (excluding surface texture standards)	As BS 1134:Part 1:1988	7.0 % (minimum 1.0 μm Ra)		A

Assessment Manager: PC Page 2 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service
2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

25 to 1200			
Length Parallelism	1.0 + (5.0 x length in m) 1.0	Using a length measuring Machine or by comparison with End standards	А
0 to 100	2.1	Using a length measuring machine	A
Track Grinding Gauges (HB221) 0 to 1440	29	Procedure CM-C-686	А
Autocoupler Pin Checking Gauges (HB035) 0 to 1.0	3.0	Procedure CM-C-706	
Brake Pad Wear Gauge (HB100) 0 to 10.0	2.7	Procedure CM-C-705	
Back to Back Gauges (HB018) 0 to 1360	9.3	Procedure CM-C-704	
- (() () () () () () () () () () () () ()	Track Grinding Gauges (HB221) 0 to 1440 Autocoupler Pin Checking Gauges (HB035) 0 to 1.0 Brake Pad Wear Gauge (HB100) 0 to 10.0 Back to Back Gauges (HB018)	Track Grinding Gauges (HB221) 0 to 1440 Autocoupler Pin Checking Gauges (HB035) 0 to 1.0 Brake Pad Wear Gauge (HB100) 0 to 10.0 Back to Back Gauges (HB018)	End standards Using a length measuring machine Procedure CM-C-686 HB221) O to 1440 Autocoupler Pin Checking Gauges (HB035) O to 1.0 Brake Pad Wear Gauge (HB100) O to 10.0 Brake Pad Wear Gauge (HB100) O to 10.0 Brake Back Gauges (HB035) O to 10.0 Brake Pad Wear Gauge (HB100) O to 10.0

Assessment Manager: PC Page 3 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
PRESSURE			Mothodo consistent	
Gas pressure (gauge) Calibration of pressure measuring instruments and	- 95 kPa to 0 Pa 0 Pa to 2 MPa	Q [0.0067 %, 250 Pa] Q [0.0067 %, 90 Pa]	Methods consistent with EURAMET CG17	В
gauges.	- 95 kPa to 2 MPa 2 MPa to 10 MPa	Q [0.0067 %, 250 Pa Q [0.0067 %, 3.8 kPa]		В, С
Gas pressure (absolute) Calibration of pressure measuring instruments and gauges.	70 kPa to 2 MPa	Q [0.0067 %, 90 Pa]		В
Hydraulic pressure (gauge) Calibration of pressure measuring instruments and gauges.	500 kPa to 5.5 MPa 5 MPa to 110 MPa	0.031 % 0.030 %		В
TORQUE				A
Hand torque tools (excluding torque screwdrivers)	As BS EN ISO 6789 :2017 0.7 N·m to 1500 N·m	0.30 %	Calibrations may also be given in lbf.in and lbf.ft.	A
ELECTRICAL				В

Assessment Manager: PC Page 4 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
		r the calibration of both measuremen laboratory standards unless otherwi		
DC Voltage	0 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V 100 V to 1.1 kV	7.5 µV/V + 420 nV 2.9 µV/V + 1.5 µV 2.9 µV/V + 14 µV 4.3 µV/V + 340 µV 4.4 µV/V + 10 mV		В
	0 V to 90 mV 90 mV to 20 V	0.012 % + 12 µV 0.013 % + 2.3 mV	These output values can be measured	С
	0 V to 100 mV 90 mV to 20 V	0.012 % + 12 μV 0.013 % + 2.3 mV	Values available for direct measurement	С
High Voltage	1 kV to 40 kV	0.70 % + 15 V	These output values can be measured.	В
DC Current	0 μA to 10 μA 10 μA to 100 μA 100 μA to 1 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A 1 A to 10 A 10 A to 20 A	540 pA 870 pA 9.2 μA/A + 10 nA 14 μA/A + 70 n A 57 μA/A + 1.6 μA 130 μA/A + 100 μA 230 μA/A + 580 nA 0.020 % + 4.9 mA		В
	1 A to 2 A 2 A to 20 A 20 A to 120 A	82 μΑ/A + 370 μΑ 76 μΑ/A + 9.8 mA 50 μΑ/A	Values available for direct measurement	В
	0 A to 24 mA 0 A to 24 mA	0.031 % + 2.3 μA 0.031 % + 3.4 μA	These output values can be measured Values available for direct measurement	С
DC Current	1 A to 10.5 A 10.5 A to 20 A 20 A to 105 A 105 A to 525 A 525 A to 1000 A 1000 A to 2500 A	0.074 % + 1.2 mA 0.45 % + 26 mA 0.075 % + 12 mA 0.075 % + 60 mA 0.50 % + 1.3 A 0.069 % + 520 mA	Output values above 10 A – simulation Using a multiturn coil	В

Assessment Manager: PC Page 5 of 11

...

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
ELECTRICAL continued				
Resistance	$\begin{array}{c} 0 \ \Omega \ \text{to} \ 10 \ \Omega \\ 10 \ \Omega \ \text{to} \ 100 \ \Omega \\ 100 \ \Omega \ \text{to} \ 1 \ \text{k}\Omega \\ 1 \ \text{k}\Omega \ \text{to} \ 10 \ \text{k}\Omega \\ 10 \ \text{k}\Omega \ \text{to} \ 100 \ \text{k}\Omega \\ 100 \ \text{k}\Omega \ \text{to} \ 100 \ \text{M}\Omega \\ 1 \ \text{M}\Omega \ \text{to} \ 100 \ \text{M}\Omega \\ 10 \ \text{M}\Omega \ \text{to} \ 100 \ \text{M}\Omega \\ 100 \ \text{M}\Omega \ \text{to} \ 100 \ \text{M}\Omega \\ 100 \ \text{M}\Omega \ \text{to} \ 100 \ \text{M}\Omega \\ 100 \ \text{M}\Omega \ \text{to} \ 100 \ \text{G}\Omega \\ \end{array}$	$\begin{array}{l} 17 \; \mu\Omega/\Omega + 10 \; n\Omega \\ 9.0 \; \mu\Omega/\Omega + 50 \; n\Omega \\ 9.0 \; \mu\Omega/\Omega + 220 \; n\Omega \\ 9.0 \; \mu\Omega/\Omega + 25 \; \mu\Omega \\ 9.0 \; \mu\Omega/\Omega + 890 \; \mu\Omega \\ 9.0 \; \mu\Omega/\Omega + 10 \; \Omega \\ 12 \; \mu\Omega/\Omega + 15 \; k\Omega \\ 39 \; \mu\Omega/\Omega \; + 110 \; k\Omega \\ 650 \; \mu\Omega/\Omega \; + 120 \; M\Omega \\ 1300 \; \mu\Omega/\Omega + 210 \; M\Omega \end{array}$		В
AC Voltage	1 mV to 100 mV 10 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz 100 mV to 1 V 10 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 50 kHz	88 μV/V + 10 μV 230 μV/V + 8.2 μV 530 μV/V + 3.7 μV 76 μV/V + 28 μV 230 μV/V + 64 μV 530 μV/V + 140 μV		В
	1 V to 10 V 10 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 50 kHz 10 V to 100 V 10 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 50 kHz 100 V to 1050 V 10 Hz to 1 kHz	76 μV/V + 560 μV 76 μV/V + 430 μV 230 μV/V + 1.5 V 250 μV/V + 2.6 mV 250 μV/V + 17 mV 590 μV/V + 25 mV		
High Voltage	1 kV to 40 kV 50 Hz to 60 Hz	1.5 % + 45 V	These output values can be measured.	В
AC Current	1 μA to 100 μA 40 Hz to 1 kHz 100 μA to 1 mA 40 Hz to 1 kHz 1 mA to 10 mA 40 Hz to 1 kHz 10 mA to 100 mA 40 Hz to 1 kHz	0.0010 % + 7.6 nA 0.030 % + 90 nA 0.030 % + 1.1 μA 0.030 % + 2.5 μA		В

Assessment Manager: PC Page 6 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
AC Current (continued)	100 mA to 1 A 40 Hz to 1 kHz	0.030 % + 4.6 μA		В
	10 A to 20 A 40 Hz to 1 kHz	0.20 % + 4.9 mA		
	1 A to 3.2 A 10 Hz to 3 kHz 3 kHz to 10 kHz	0.12 % + 560 μA 0.13 % + 3.0 mA	Values available for direct measurement	
	3.2 A to 10.5 A 10 Hz to 3 kHz 3 kHz to 10 kHz	0.23 % + 4.4 mA 0.58 % + 12 mA		
	10.5 A to 120 A 50 Hz 51 Hz to 100 Hz	0.36 % + 140 mA 0.58 % + 110 mA	Simulation using a Multiturn coil	
	10.5 A to 105 A 10 Hz to 400 Hz	0.28 % + 44 mA		
	105 A to 525 A 10 Hz to 400 Hz	0.28 % + 220 mA		
	500 A to 1000 A 50 Hz 51 Hz to 100 Hz	0.043 % + 130 mA 0.043 % + 310 mA		
	1000 A to 2500 A 50 Hz to 100 Hz	0.043 % + 1.3 A		
Capacitance 1 kHz	0.1 nF to 1 nF 1 nF to 10 nF 10 nF to 100 nF 100 nF to 1 μF 1 μF to 10 μF 10 μF to 100 μF 1 mF to 10 mF 10 mF to 100 mF	0.18 % + 10 pF 0.080 % + 4.6 pF 0.049 % + 58 pF 0.041 % + 140 pF 0.042 % + 2.5 nF 0.061 % + 28 nF 0.062 % + 0.31 µF 0.071 % + 3.3 µF 0.071 % + 3.3 µF	Simulated values for the calibration of capacitance meters.	В
Oscilloscopes	10 MF to 100 MF	0.071% + 3.3 με		
Vertical deflection	At 1 kHz 10 mV to 100 mV 100 mV to 120 V	0.040 % + 27 μV 0.050 %		В
Horizontal deflection	2 ns to 5 s	0.12 %		
Tachometers	0 RPM to 6 000 RPM 6000 RPM to 60 000 RPM	0.10 RPM 1.0 RPM		В

Assessment Manager: PC Page 7 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

10 kΩ to 40 kΩ 40 kΩ to 200 kΩ			
40 kΩ to 200 kΩ			
200 kΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 2 GΩ	$0.020 \% + 15 \Omega$ $0.025 \% + 15 \Omega$ $0.050 \% + 590 \Omega$ $0.22 \% + 120 k\Omega$ $0.52 \% + 120 k\Omega$		В
0 mA to 9.9 mA	76 µA		
100 m Ω to 400 m Ω 400 m Ω to 5 Ω 5 Ω to 30 Ω 30 Ω to 200 Ω 200 Ω to 2 k Ω 2 k Ω to 10 k Ω	$1.0~\% + 1.5~\text{m}\Omega$ $0.80~\% + 8.3~\text{m}\Omega$ $0.12~\%$ $0.11~\%$ $0.11~\%$ $0.17~\%$		В
50 mA to 400 mA	21 %		В
3 V to 600 V 3 V <i>50 Hz</i> to 600 V <i>50 Hz</i>	0.15 % 0.18 %		
180 mV to 1 kV 130 mV <i>50 Hz</i> to 1 kV <i>50 Hz</i>	0.060 % + 180 mV 0.10 % + 130 mV		В
1 kV to 7 kV 10 kV to 25 kV	0.25 % + 24 V 0.25 % +120 V		В
1 kV to 10 kV 10 kV to 25 kV	0.060 % + 40 V 0.060 % + 120 V		В
300 µA 3 mA 30 mA 300 mA	0.36 % + 3.4 μA 0.24 % + 8.5 μA 0.58 % + 27 μA 0.23 % + 180 μA		В
300 µA 3 mA 30 mA 300 mA	0.36 % + 3.4 μA 0.24 % + 8.5 μA 0.58 % + 25 μA 0.23 % + 180 μA		В
10 m Ω to 90 m Ω 90 m Ω to 320 m Ω 320 m Ω to 490 m Ω 490 m Ω to 1 Ω 1 Ω to 5 Ω 5 Ω to 500 Ω 500 Ω to 1.8 k Ω	$\begin{array}{l} 3.7~\% + 18~\text{m}\Omega \\ 1.8~\% + 18~\text{m}\Omega \\ 0.90~\% + 23~\text{m}\Omega \\ 0.60~\% + 24~\text{m}\Omega \\ 0.30~\% + 43~\text{m}\Omega \\ 0.10~\% + 200~\text{m}\Omega \\ 0.10~\% + 24~\Omega \\ \end{array}$		В
1 mA to 30 mA 30 mA to 300 mA 300 mA to 3 A	0.20 % + 38 μA 0.20 % + 1.4 mA 0.20 % + 11 mA		В
0 ms to 5 s	0.10 % + 4.7 ms		В
0 145322 5 33 11 11 11 3333 3333 1934155 133	0 mA to 9.9 mA 100 mΩ to 400 mΩ 100 mΩ to 5 Ω 100 Ω to 200 Ω 100 Ω to 200 Ω 100 Ω to 2 kΩ 100 mA to 400 mA 100 mV to 1 kV 100 kV to 7 kV 100 kV to 25 kV 100 kV to 25 kV 100 kV to 25 kV 100 mA 100 mA 100 mA 100 mA 100 mA 100 mΩ to 90 mΩ 100 mΩ to 320 mΩ 100 mΩ to 490 mΩ 100 mΩ to 5 Ω 100 mΩ to 5 Ω 100 mΩ to 5 Ω 100 mA 100 mΩ to 100 mA 100 mΩ to 100 mΩ 100 mΩ to 100 mA 100 mA to 300 mA 100 mA to 300 mA 100 mA to 300 mA	76 μA 1.0 mΩ to 400 mΩ 1.0 % + 1.5 mΩ 0.80 % + 8.3 mΩ 0.12 % 0.11 % 0.11 % 0.17 % 30 mA to 400 mA 21 % 30 w to 10 kΩ 30 w to 50 Hz to 600 V 50 Hz 180 mV to 1 kV 130 mV 50 Hz to 1 kV 50 Hz 1kV to 7 kV 10 kV to 25 kV 1kV to 10 kV 10 kV to 25 kV 10 mA 30 mA	10 mA to 9.9 mA 100 mΩ to 400 mΩ 1.0 % + 1.5 mΩ 0.80 % + 8.3 mΩ 0.12 % 100 Ω to 200 Ω 0.11 % 100 mA to 200 Ω 0.11 % 100 mA to 400 mA 21 % 100 mA to 400 mA 0.25 % + 24 V 0.25 % + 24 V 0.25 % + 120 V 100 μA 100 μA

Assessment Manager: PC Page 8 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
17 th Edition capability				
PAT Insulation resistance	10 kΩ to 40 kΩ 40 kΩ to 200 kΩ 200 kΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 2 GΩ	0.020 % + 15 Ω 0.025 % + 15 Ω 0.050 % + 590 Ω 0.22 % + 120 kΩ 0.52 % + 120 kΩ		В
Earth Bond resistance	0 Ω to 10 Ω 10 Ω to 1 k Ω	0.30 % + 40 mΩ 0.11 % + 200 mΩ		В
Earth bond current	100 μA to 100 mA 100 mA to 20 A	4.0 mA 0.53 % + 32 mA		В
Leakage current	1 μA to 30 mA	0.52 % + 20 μA		В
Temperature simulation Thermocouple type				В
К	-180 °C to 0 °C	0.16 °C	Excluding internal reference junction compensation	
	0 °C to 1300 °C	0.14 °C	compensation	
J	-200 °C to 0 °C 0 °C to 1190 °C	0.15 °C 0.13 °C		
К	-180 °C to 0 °C	0.64 °C	Including internal reference junction	
	0 °C to 1300 °C	0.63 °C	compensation	
J	-200 °C to 0 °C 0 °C to 1190 °C	0.63 °C 0.63 °C		
Resistance thermometer simulation				
PT 100	-200 °C to 0 °C 0 °C to 850 °C	0.21 °C 0.21 °C		
К	-200 °C to 0 °C 0 °C to 1000 °C 1000 °C to 1362 °C	0.46 °C 0.23 °C 0.24 °C	Excluding internal reference junction compensation	С
J	-210 °C to 0 °C 0 °C to 800 °C 800 °C to 1200 °C	0.46 °C 0.30 °C 0.38 °C		
К	-200 °C to 0 °C 0 °C to 1000 °C 1000 °C to 1362 °C	0.77 °C 0.68 °C 0.65 °C	Including internal reference junction compensation	С
J	-210 °C to 0 °C 0 °C to 800 °C 800 °C to 1200 °C	0.89 °C 0.78 °C 0.82 °C		

Assessment Manager: PC Page 9 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
TEMPERATURE Electronic thermometers with indicators and data-loggers	-25 °C to +28 °C +28 °C to +350 °C 5 °C to 50 °C	0.48 °C 0.43 °C 0.19 °C	By comparison with a reference thermometer in a dry block calibrator. Performed in air using a portable chamber	B & C
Temperature controlled ovens, environmental chambers, fridges/refrigerators, freezers (inclusive of associated indicators, controllers and recorders, all with sensors, within the specified parameters and ranges)	-25 °C to 0°C 0 °C to +250 °C	0.60 °C 0.40 °C	Single and multipoint time dependent temperature profiling, also referred to as spatial temperature surveying or mapping.	С
HUMIDITY Relative Humidity	10 %rh to 95 %rh Performed at 25 °C	2.0 %rh 0.19 °C	By comparison with a reference hygrometer.	В
		END		

Assessment Manager: PC Page 10 of 11

Schedule of Accreditation issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

CoMech Metrology Ltd

Issue No: 048 Issue date: 10 July 2024

Calibration performed by the Organisation at the locations specified

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant nonrepeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Assessment Manager: PC Page 11 of 11