Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

0478

TW11 0LW

Accredited to ISO/IEC 17025:2017

Issue No: 141 Issue date: 05 December 2024

Hampton Road Contact: Customer Helpline
Teddington Tel: +44 (0)20 8943 7070
Middlesex Fax: +44 (0)20 8614 0482

E-Mail: measurement_services@npl.co.uk

quality@npl.co.uk
Website: www.npl.co.uk

Calibration performed by the Organisation at the locations specified below

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address National Physical Laboratory Hampton Road Teddington Middlesex TW11 0LW	Local contact Mr Tahir Maqba, Customer Services Manager Tel: +44 (0)20 8943 6796 Fax: +44 (0)20 8614 0482 Email: tahir.maqba@npl.co.uk	Calibration Chemical Mass Density and Optical Volume Pressure Dimensional Radiological Electromagnetic Temperature Fibre optics Time and Frequency Flow Ultrasonics Force Underwater Acoustics Humidity	Teddington
Address Wraysbury Reservoir Coppermill Road Wraysbury Middlesex TW19 5NW	Local contact Mr J Ablitt Tel: +44 (0)20 8943 6695 Email: justin.ablitt@npl.co.uk	<u>Calibration</u> <u>Underwater Acoustics</u>	Wraysbury

Site activities performed away from the locations listed above:

Location details	Activity	Location Code
Customer's sites or premises The customer's site or premises must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer.	Calibration Time and Frequency Chemical (Environmental air quality monitoring instruments)	Customers' sites

Assessment Manager: JG2 Page 1 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
DC VOLTAGE Service Reference ED01			Direct comparison against Josephson Junction array.	
Standard cells, not thermostated	1.018 V nominal	0.090 μV/V	Measured in a thermostated air enclosure at 20 °C.	
Standard cells in a thermostated enclosure	1.018 V nominal	0.090 µV/V		
Electronic reference standards	1.0 V 1.018 V 10 V	0.14 μV/V 0.14 μV/V 0.020 μV/V	Supplementary data can be supplied showing detailed behaviour of standard cells or electronic devices.	
DC RESISTANCE			Using build up technique referred to quantum Hall	
Service Reference ED02	0.1 mΩ 1 mΩ 10 mΩ 100 mΩ 1 Ω 10 Ω 25 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ	2.5 μΩ/Ω 0.85 μΩ/Ω 0.80 μΩ/Ω 0.18 μΩ/Ω 0.060 μΩ/Ω 0.050 μΩ/Ω 0.050 μΩ/Ω 0.050 μΩ/Ω 0.050 μΩ/Ω 0.050 μΩ/Ω 0.050 μΩ/Ω 0.050 μΩ/Ω 0.080 μΩ/Ω	resistor. 4 terminal resistors at temperatures between 17 °C and 25 °C and at or less than 1 mW power dissipation 2-terminal resistors at temperatures between 17 °C and 25 °C and at or less than	Teddington
	10 MΩ 100 MΩ	0.20 μΩ/Ω 0.40 μΩ/Ω	1 mW power dissipation. Values >10 k Ω are not measured in oil.	
	1 GΩ	1.6 μΩ/Ω	Measured in a 2-terminal configuration, in air, at 20 °C or 23 °C.	
Temperature Coefficient	αβ	0.0020 μΩ/Ω K ⁻¹ 0.0010 μΩ/Ω K ⁻²	Resistance measurements at 4 temperatures in the range 15 °C to 30 °C. Uncertainty dependent on fit to curve and nominal value of resistor.	
Current Carrying Resistors	100 μΩ to 10 Ω 30 mA to 50 A 20 A to 100 A	0.50 μΩ/Ω to 5.0 μΩ/Ω 5.0 μΩ/Ω to 10 μΩ/Ω	Using ratio techniques.	

Assessment Manager: JG2 Page 2 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
AC RESISTANCE Service Reference ED02			Using AC bridge techniques.	
Specific values	1 Ω 40 Hz to 1 kHz 1 kHz to 2 kHz 2 kHz to 3 kHz 3 kHz to 5 kHz 5 kHz to 10 kHz 20 kHz	5.0 μΩ/Ω 4.0 μΩ/Ω 5.0 μΩ/Ω 6.0 μΩ/Ω 15 μΩ/Ω 50 μΩ/Ω	The uncertainties quoted for AC resistance may depend on the type and construction of the resistor	
Other values	10 Ω to 10 kΩ 40 Hz to 400 Hz 400 Hz to 2 kHz 2 kHz to 3 kHz 3 kHz to 5 kHz 5 kHz to 10 kHz 20 kHz	1.0 μΩ/Ω 0.50 μΩ/Ω 1.2 μΩ/Ω 1.8 μΩ/Ω 6.0 μΩ/Ω 50 μΩ/Ω	Exceptions: 10 Ω, 40 Hz: 1.5 μΩ/Ω 100 Ω, 400 Hz to 1.59 kHz: 0.60 μΩ/Ω 100 Ω, 1.59 kHz to 2 kHz: 0.80 μΩ/Ω 100 Ω, 2 kHz to 3 kHz: 1.5 μΩ/Ω 10 kΩ,10 kHz: 8.0 μΩ/Ω	
Time constant (τ) AC CURRENT RATIO Service Reference ED07	0 ns to ± 200 ns	10 ns	All nominal values and frequencies shown above. Using current comparator.	Teddington
Current Transformers Ratio and phase error	0.25 A to 0.5 A 50 Hz 5 A to 1000 A 50 Hz to 400 Hz 1000 A to 5000 A 50 Hz to 60 Hz 5 kA to 10 kA 50 Hz 50 Hz to 400 Hz Class 0.01, 0.02 and 0.03	Ratio error Phase error 0.001% 10 μrad 0.001% 10 μrad 0.002% 20 μrad 0.001% 10 μrad 0.001% 10 μrad	The CMCs apply to compensated current transformers only. 1 A or 5 A secondary. The CMCs apply to measurements carried out on uncompensated current	
Current Transducers with output voltage greater than 0.10V	Class 0.1 and higher	0.003% 30 μrad 0.050 %	transformers in accordance with BS EN 61869-2:2012 at unity or 0.8 power factor as specified or required.	

Assessment Manager: JG2 Page 3 of 68

Accredited to ISO/IEC 17025:2017

600 V

700 V

1 kV

11

11

11

9.0

9.0

9.0

10

10

11

19

19

23

29

29

33

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

				рололи	· · · · · · · · · · · · · · · · · · ·	J. J			,			
	ired Qua ent or G		Range			Expanded Measurement Uncertainty (k = 2)			Remarks			Location Code
AC/DC TRA	NSFER V	OLTAGE							Build up technique against known AC/DC transfer standard.			
Service Ref	erence ED	111										
CM									inty (k = 2) [10 ne adjacent point			
						Frequency	,					
Voltage	10 Hz	20 Hz to 5 kHz	10 kHz	20 kHz	50 kHz	100 kHz	200 kHz	300 kH	z 500 kHz	700 kHz	1 MHz	
1 mV	66	66	66	66	71	85	120	180	260	480	800	
2 mV	66	57	57	57	59	71	99	140	190	330	510	
5 mV	28	28	28	28	33	48	83	120	180	290	460	
10 mV	28	28	28	28	33	46	78	110	170	260	410	
20 mV	28	28	28	28	31	46	78	110	160	250	370	
70 mV	26	26	26	26	31	41	76	110	160	250	370	
100 mV	7.0	7.0	7.0	7.0	9.0	14	24	36	58	82	120	-
200 mV	7.0	7.0	7.0	7.0	9.0	14	24	36	58	82	120	Teddington
300 mV	6.0	6.0	6.0	6.0	7.0	11	20	29	48	68	96	di di
500 mV	6.0	6.0	6.0	6.0	7.0	10	16	23	38	54	76	gto
1 V	6.0	6.0	6.0	6.0	7.0	7.0	13	17	25	38	51	ă
2 V	6.0	6.0	6.0	6.0	6.0	7.0	10	12	17	27	38	
3 V	6.0	6.0	6.0	6.0	6.0	7.0	10	12	17	27	38	
4 V	6.0	6.0	6.0	6.0	6.0	6.0	8.0	9.0	13	21	31	
5 V	6.0	6.0	6.0	6.0	6.0	6.0	8.0	9.0	13	21	31	
10 V	6.0	6.0	6.0	6.0	6.0	6.0	8.0	10	15	22	32	
20 V	6.0	6.0	6.0	6.0	6.0	7.0	9.0	11	16	25	34	
30 V	6.0	6.0	6.0	6.0	6.0	7.0	11					
50 V	7.0	7.0	7.0	7.0	7.0	10	14					
70 V	7.0	7.0	7.0	7.0	7.0	10	14					
100 V	7.0	7.0	7.0	7.0	7.0	10	14					
200 V	8.0	8.0	8.0	10	13	22						
300 V	8.0	8.0	8.0	10	13	22						
500 V	11	9.0	10	15	24	42						

Assessment Manager: JG2 Page 4 of 68

52

52

62

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

	Canstation portormou sy the Organication at the locations opening														
	Measured Quantity nstrument or Gauge			Range			Expanded Measurement Uncertainty (k = 2)				Range Measurement Remarks				Location Code
	RANSFER CURRENT Build up technique against known AC/DC transfer standard. Reference ED11														
									ed Uncertai ation betwe						
							Frequenc	у							
Current	10 Hz	20 Hz	40 Hz	100 Hz	400 Hz	1 kHz	2 kHz	5 kHz	10 kHz	20 kHz	50 kHz	70 kHz	100 kHz		
1 mA	31	30	30	30	30	30	30	30	30	31	31	33	35		
2 mA	17	17	16	16	16	16	16	16	17	18	19	22	25		
3 mA	12	12	12	12	12	12	12	12	13	14	16	19	22		
5 mA	11	10	10	10	10	10	10	10	12	13	15	19	22		
10 mA	11	10	10	10	10	10	10	10	12	13	15	19	22		
20 mA	11	10	10	10	10	10	10	10	12	13	15	19	22	Teddington	
30 mA	11	10	10	10	10	10	10	10	12	13	15	19	22	ding	
50 mA	11	10	10	10	10	10	10	10	12	13	15	19	22	ton	
0.1 A	14	13	12	12	12	12	12	12	12	13	20	23	42		
0.2 A	23	20	16	16	16	16	16	16	16	17	28	33	61		
0.25 A	23	20	16	16	16	16	16	16	16	17	28	33	61		
0.3 A	30	26	16	17	16	18	16	17	15	24	43	52	81		
0.5 A	30	26	16	17	16	18	16	17	15	24	43	52	81		
1 A	38	31	19	19	19	20	17	18	17	33	53	62	100		
2 A	47	37	22	20	21	22	20	21	20	43	63	83	120		
2.5 A	47	37	22	20	21	22	20	21	20	43	63	83	120		
3 A	55	43	25	23	24	24	23	21	22	53	83	100	160		
5 A	55	43	25	23	24	24	23	21	22	53	83	100	160		
10 A	63	49	27	25	26	26	25	26	23	62	100	120	200		
20 A	72	56	31	28	30	29	28	29	28	73	120	140	240		

Assessment Manager: JG2 Page 5 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
AC VOLTAGE RATIO Service Reference ED13			Using AC bridge and build up techniques.	
Inductive Voltage Dividers Voltage ratio		Voltage ratio uncertainty with respect to input voltage (x 10 ⁻⁸) In-phase Quadrature		
	LF System 40 Hz 60 Hz 80 Hz 100 Hz 120 Hz 200 Hz 300 Hz 400 Hz 600 Hz 800 Hz 1300 Hz 1592 Hz 2000 Hz 3000 Hz 4000 Hz 4000 Hz 5000 Hz	16 17 16 17 12 14 9.3 11 7.1 8.4 6.1 7.7 6.1 6.9 6.1 6.9 6.1 6.9 6.1 6.9 6.1 6.9 6.1 6.9 6.1 6.9 6.1 6.9 6.1 1 6.9 6.1 6.9 1 6	Normal operating range: Minimum voltage: 1 V Maximum voltage: 0.1 x f(Hz) from 40 Hz to 80 Hz; 0.15 x f(Hz) from 100 Hz to 200 Hz; 30 V otherwise.	Teddington
	5 kHz 8 kHz 10 kHz 20 kHz 30 kHz 40 kHz 50 kHz 100 kHz 100 kHz	21 21 30 30 38 38 72 75 120 120 180 190 280 300 630 650 990 1000 1500 1600	Normal operating range: Minimum voltage: 1 V Maximum voltage: 30 V	

Assessment Manager: JG2 Page 6 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
AC POWER Service Reference ED06			Using phantom load terchniques.	
Sinusoidal waveforms	40 Hz to 400 Hz: Current 2 mA to 130 A Voltage 1 V to 1000 V	40 μW/VA 25 μW/VA	20 °C and 23 °C at unity power factor 20 °C and 23 °C at zero power factor Uncertainties increase at other power factors	
Current Response of Wattmeters	2 mA to 20 A	30 μW/VA	20 °C and 23 °C	
Voltage Response of Wattmeters	1 V to 1000 V	25 μW/VA	20 °C and 23 °C	
Auxiliary DC Voltage	DC, 1 V to 10 V	5.0 μV/V	20 °C and 23 °C	
AC REACTIVE VOLT-AMPERES	50 Hz to 400 Hz:			
Sinusoidal waveforms	Current 2 mA to 130 A Voltage 1 V to 1000 V	40 μW/VA	20 °C and 23 °C at zero power factor	eddi
		25 μW/VA	20 °C and 23 °C at unity power factor Uncertainties increase at other power factors	Teddington
CALIBRATION OF EN 61000 Service Reference ED17	 HARMONIC AND FLICKER A 	 NALYSERS 		
Sinusoidal waveforms				
Current accuracy	100 mA to 20 A, <i>50 Hz</i>	40 μA/A		
Current frequency response	100 mA to 20 A 50 Hz to 2 kHz	150 μA/A		
Voltage accuracy	1 V to 1000 V, <i>50 Hz</i>	30 μV/V		
Power measurements	Ranges as in AC Power above	45 x 10 ⁻⁶ of full-scale	At unity power factor	
Non-sinusoidal waveforms				
Harmonic measurements for current waveforms	Peak values 1A to 10 A 50 Hz fundamental; harmonics up to 2 kHz	200 μΑ/Α	Steady-state, burst fluctuating or smoothly fluctuating harmonics	

Assessment Manager: JG2 Page 7 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
CALIBRATION OF EN 61000 HARMONIC AN (continued)	 D FLICKER ANALYSERS 			
Flicker (Pst)	0.95 Pst to 1.05 Pst Square or sine wave modulated, 230 V 50 Hz sine wave	0.30 % of Pst reading		
	0.95 Pst to 2.05 Pst Complex waveforms, 230 V 50 Hz sine wave	0.20 % of Pst reading		
CAPACITANCE and DISSIPATION				
FACTOR Service Reference ED04			Using Coaxial bridge techniques. Capacitance and dissipation factor measurements are normally carried out between 20 °C and 23 °C but may exceptionally be carried out at any temperature between 18 °C and 25 °C.	Те
Fused-silica dielectric capacitors	1 pF 10 pF 100 pF	C D 0.90 μF/F 7.0 x 10 ⁻⁶ 0.70 μF/F 6.0 x 10 ⁻⁶ 0.90 μF/F 7.0 x 10 ⁻⁶	Measurements are normally made at 1 kHz or 1.592 kHz. Other frequencies between 20 Hz and 100 kHz may be used but the uncertainty will be increased in a complex	Teddington
Other types of capacitor	1 pF 10 pF to 1 nF	4.0 μF/F 1.0 x 10 ⁻⁵ 3.0 μF/F 7.0 x 10 ⁻⁶	manner that varies with frequency and capacitance.	
Four-terminal pair capacitors	1 pF to 1 nF 10 nF to 100 nF 1 μF 10 μF 100 μF 1 mF	100 μF/F		
General Radio Type 1417	1 μF to 10 mF	0.10 % to 0.0010 to 0.50 % 0.005	100 Hz, 120 Hz and 1 kHz	
	100 mF to 1 F	0.30 % to 0.0030 to 0.010	100 Hz and 120 Hz	

Assessment Manager: JG2 Page 8 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

(k=2)	Remarks		
l	Using AC bridge tec	chniques.	
2) for the freque	encies shown		
1.592 kHz 2 kHz	5 kHz	10 kHz	
1000	2500	3500	
1000	2200	3000	
1000	2200	2600	
600	1100	1500	
350	620	930	
160	320	460	
120	190	260	-
100	160	200	
80	120	150	
85	110	150	-
85	120	150	
80	100	150	
75	100	150	
80	110	150	
85	120	150	_
80	110	150	ed
70	100	130	
75	110	130	g
85	110	150	Teddington
80	160	200	
70	140	200	
75	200	300	
75	200	380	
	200	400	
	_		
r a k	at frequencies of 20 out the uncertainties	Hz and 50 Hz	
- -	i	70 200 70 85 85 85 Measurements can at frequencies of 20 but the uncertainties increased.	70 200 400 70 85 85 85 Measurements can also be made at frequencies of 20 Hz and 50 Hz but the uncertainties may be

Inductance measurements are normally carried out between 20 °C and 23 °C but may exceptionally be carried out at any temperature between 18 °C and 25 °C. The DC resistance of an inductor can also be reported as an indication of its temperature. Inductance measurements may be made at other frequencies between 20 Hz and 10 kHz, but the uncertainties may be increased.

Assessment Manager: JG2 Page 9 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
MAGNETIC QUANTITIES Service Reference MT41				
DC MAGNETIC FIELD STRENG	TH AND MAGNETIC FLUX DEI	NSITY		
	0.8 mA/m (1 nT) to 16 A/m (20 μT)	0.15 % + 0.4 mA/m (0.5 nT)	Using fluxgate magnetometer.	
	16 A/m (20 μT) to 72 A/m (90 μT)	0.0030 %	Using ptoton resonace magnetometer.	
	72 A/m (90 μ T) to 280 A/m (350 μ T)	0.050 %	Resonance method.	
	280 A/m (350 μ T) to 40 kA/m (50 mT)	0.20 %	Using Hall effect gaussmeter.	
	40 kA/m (50 mT) to 10.5 MA/m (13 T)	0.0015 %	Using NMR gaussmeter.	
AC MAGNETIC FIELD STRENG	TH AND MAGNETIC FLUX DEI	NSITY	Comparison against reference coils.	
	8 mA/m (10 nT) to 17.5 kA/m (22 mT) 10 Hz to 60 Hz	0.25 %		Teddington
	8 mA/m (10 nT) to 80 A/m (100 μT) 60 Hz to 20 kHz	0.25 %		ton
	8 mA/m (10 nT) to 40 A/m (50 μT) 20 kHz to 50 kHz	0.40 %		
	8 mA/m (10 nT) to 15.9 A/m (20 μT) 50 kHz to 120 kHz	0.70 %		
MAGNETIC FIELD STRENGTH	TO CURRENT RATIO			
Standard solenoids and Helmholtz coils	1 A/m/A to 20 000 A/m/A DC 12 Hz to 60 Hz 60 Hz to 20 kHz	0.015 % 0.050 % 0.25 %	Using reference magnetometer and residual field cancellation technique.	

Assessment Manager: JG2 Page 10 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
MAGNETIC QUANTITIES (continued)				
TURN AREA (effective area)			Using standard solenoid or Helmholtz coils.	
Search coils	0.0029 m ² to 17 m ² 12 Hz to 60 Hz	0.090 %		
	0.0001 m ² to 200 m ² 60 Hz to 20 kHz 20 kHz to 50 kHz 50 kHz to 120 kHz	0.25 % 0.40 % 0.70 %		
NORMAL DC MAGNETIZATION	I CURVES AND HYSTERESIS I	OOPS		
Ring specimens	H = 0.1 kA/m to 10 kA/m B = 0.05 T to 2.5 T	0.30 % 0.30 %	In accordance with EN 60404 Part 4: 1997 and IEC 60404 Part 4:2008.	
Bar or rod specimens	H = 0.1 kA/m to 200 kA/m B = 0.05 T to 2.5 T	0.30 % 0.30 %	In accordance with EN 60404 Part 4: 1997 and IEC 60404 Part 4:2008.	
DC DEMAGNETIZATION CURV	I E FOR HARD MAGNETIC MAT	I ERIALS		Ted
Remanence	B _r = 0.02 T to 2 T	0.30 %		Teddington
Coercivity	$H_{CB} = 0.03 \text{ to } 1.2 \text{ MA/m}$ $H_{CJ} = 0.03 \text{ to } 1.6 \text{ MA/m}$	0.40 % 0.40 %	In accordance with BS EN 60404 Part 5: 2007 and IEC 60404 Part 5: 2007.	on
Maximum energy product	$(B.H)_{max} = 1 \text{ to } 400 \text{ kJ/m}^3$	0.50 %		
DC RELATIVE MAGNETIC PER	I MEABILITY, μ _r			
For low magnetic Permeability materials	$(\mu_r - 1) = 0.001 \text{ to } 1.5$ $(\mu_r - 1) = 0.0002 \text{ to } 0.001$	0.20 % 2.2 %	In accordance with BS EN 60404 Part 15: 2012	
Permeability measuring instruments and indicators	$(\mu_r - 1) = 0.001$ to 1.5	0.20 %	The uncertainty may be increased depending on the characteristics of the device being calibrated	

Assessment Manager: JG2 Page 11 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
SPECIFIC TOTAL POWER LOSS At J = J = J = J = J = Soft magnetic materials in ring form only SPECIFIC APPARENT POWER At J = At J = J = J = J = J = At J = J = J = J = At J = J = J = J = J = J = J = J = J = J =	00 Am² to 1000 Am² 02 W/kg to 400 W/kg 150 Hz to 2000 Hz = 0.1 T to 1.3 T 150 Hz to 1000 Hz = 1.3 T to 1.5 T = 1.5 T to 1.7 T = 1.7 T to 1.8 T = 1.8 T to 1.9 T 02 W/kg to 120 W/kg 0 Hz to 100 kHz = 1 mT to 100 mT 06 VA/kg to 450 VA/kg 150 Hz to 2000 Hz = 0.1 T to 1.3 T 150 Hz to 1000 Hz = 1.3 T to 1.5 T = 1.5 T to 1.7 T = 1.7 T to 1.8 T = 1.8 T to 1.9 T	0.40 % 0.40 % 0.55 % 0.75 % 1.0 % 0.60 % 0.70 % 1.3 % 2.7 % 5.0 %	Using detection coil and integrating fluxmeter. For strips: f > 400 Hz IEC 60404-2 BS EN 60404-2 f = 400 Hz to 1 kHz IEC 60404-10 BS EN 10252 For sheets: IEC 60404-3 BS EN 10280 For oriented and non-oriented materials	Teddington

Assessment Manager: JG2 Page 12 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
MAGNETIC QUANTITIES (continued)				
APPARENT POWER	0.06 VA/kg to 400 VA/kg		Method of measurement:	
Soft magnetic materials in ring form only	50 Hz to 100 kHz J = 1 mT to 100 mT	1.1 %	For strips: IEC 60404 Part	
AC PERMEABILITY (rms or peal	k values) 		2:2008 BS EN 60404-2: 1998	
Oriented and non-oriented materials	$\mu_r = 500 \text{ to } 200 000$ At 50 Hz and 60 Hz B = 0.5 T to 2.2 T H = 0.5 kA/m to 10 kA/m	0.45 %	For sheets: IEC 60404 Part 3:2010 BS EN 10280: 2001	
AC MAGNETIC FIELD STRENG	l TH (rms or peak values) I		Method of measurement (for strips) in accordance with	
Oriented and non-oriented materials	At 50 Hz and 60 Hz H = 0.5 kA/m to 10 kA/m	0.45 %	IEC 60404 Part 2: 2008, BS EN 60404 Part 2: 1998 and (for sheets), IEC 60404 Part 3:2010 BS EN 10280: 2001.	
AC CONDUCTIVITY Service Reference MT41			0.2010 BO LIV 10230. 2001.	Te
AC conductivity reference materials	2 MS/m to 60 MS/m (3.45 % _{IACS} to 103 % _{IACS}) 60 kHz, 20°C	0.70 %	Calibration of sets of reference materials produced by NPL.	Teddington
AC conductivity instruments	2 MS/m to 60 MS/m (3.45 % _{IACS} to 103 % _{IACS}) 60 kHz, 20°C	0.70 %	Using materials of known conductivity.	
DC RESISTIVITY AND CONDUCTIVITY Service Reference MT41				
Resistivity: Soft magnetic sheet materials	1.4 x 10 ⁻⁷ Ω ·m to 7.0 x 10 ⁻⁷ Ω ·m Temperature 20 °C Test Current ≥ 0.5 A	0.20 %	Four point resistivity measurement of electrical steel strip samples in accordance with IEC 60404-13.	
Resistivity: Soft magnetic sheet materials	1.4 x 10 ⁻⁷ Ω ·m to 7.0 x 10 ⁻⁷ Ω ·m Temperature -40 °C to +200 °C Test Current ≥ 0.5 A	0.25 %	Four point resistivity measurement of electrical steel strip samples.	
Electrical conductivity: Metallic bars of length >200 mm	0.58 MS/m to 65 MS/m (1.0 % _{IACS} to 112 % _{IACS}) <i>Temperature 20 °C</i>	0.20 %	Resistivity determined from resistance, cross-sectional area and knife edge separation.	

Assessment Manager: JG2 Page 13 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
DC RESISTIVITY AND CONDUCTIVITY (continued)				
Electrical conductivity: Metallic bars, sheet, wires, reference materials	0.58 MS/m to 65 MS/m (1.0 % _{IACS} to 112 % _{IACS}) Temperature -40 °C to +200 °C	0.25 %	Resistivity determined from resistance, cross-sectional area and knife edge separation. Also includes similar methodology using the Van der Pauw technique.	
POWER FLUX DENSITY CW SIGNALS Service Reference EF01			TEM Calla	
	0.11 nW/cm ² to 170 mW/cm ² 10 Hz to 10 kHz	0.68 dB	TEM Cells The maximum frequency and power flux density level is determined by the size of the probe.	
	0.11 nW/cm² to 265 mW/cm² 10 kHz to 300 MHz	0.68 dB	Anechoic Chambers	
			The Listed Field levels are derived from the lowest unsaturated maximum power in each range. The achievable level may be up to 20 % greater than the stated limit.	
	0.03 nW/cm² to 38 mW/cm² 240 MHz to 270 MHz	0.65 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 65 mW/cm ² 270 MHz to 350 MHz	0.65 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 87 mW/cm ² 350 MHz to 500 MHz	0.65 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 37 mW/cm ² 450 MHz to 550 MHz	0.62 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 72 mW/cm ² 550 MHz to 750 MHz	0.62 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 72 mW/cm ² 750 MHz to 950 MHz	0.62 dB	All probes and small active dipoles	

Assessment Manager: JG2 Page 14 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
POWER FLUX DENSITY (continued)	0.03 nW/cm² to 38 mW/cm² 950 MHz to 1200 MHz	0.62 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 138 mW/cm ² 1100 MHz to 1250 MHz	0.47 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 170 mW/cm ² 1250 MHz to 1700 MHz	0.47 dB	All probes and small active dipoles	
	0.03 nW/cm ² to 227 mW/cm ² 1700 MHz to 2600 MHz	0.47 dB	All probes and small active dipoles	
	0.7 nW/cm ² to 569 mW/cm ² 2.45 GHz to 2.7 GHz	0.40 dB	All probes and small active dipoles	
	0.7 nW/cm² to 921 mW/cm² 2.7 GHz to 8.2 GHz	0.40 dB	All probes and small active dipoles	
	0.7 nW/cm ² to 694 mW/cm ² 8.2 GHz to 18 GHz	0.40 dB	All probes and small active dipoles	
	1.7 μW/cm² to 92 mW/cm² 18 GHz to 40 GHz	0.35 dB	All probes and small active dipoles	
	0.11 μW/cm² to 10 mW/cm² 40 GHz to 48 GHz	0.35 dB	All probes and small active dipoles	
	0.12 µW/cm² to 0.1 mW/cm² 48 GHz to 50 GHz	0.35 dB	All probes and small active dipoles	
	0.2 μW/cm² to 0.52 mW/cm² 50 GHz to 75 GHz	0.42 dB	All probes and small active dipoles	

Assessment Manager: JG2 Page 15 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

FIELD STRENGTH CW SIGNALS Service Reference EF01 Electric Field 0.02 V/m to 800 V/m 10 Hz to 10 kHz 0.68 dB TEM Cells The maximum frequency and field strength level is determined by the size of the probe. 0.02 V/m to 1000 V/m 10 kHz to 300 MHz 0.68 dB Anechoic Chambers The Listed Field levels are derived from the lowest unsaturated maximum power in each range. The achievable level may be up to 20 % greater than the stated limit. 0.01 V/m to 380 V/m 240 MHz to 270 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 575 V/m 250 MHz to 575 V/m 250 MHz to 575 V/m	
0.02 V/m to 1000 V/m 10 Hz to 10 kHz 0.68 dB The maximum frequency and field strength level is determined by the size of the probe. 0.02 V/m to 1000 V/m 10 kHz to 300 MHz 0.68 dB Anechoic Chambers The Listed Field levels are derived from the lowest unsaturated maximum power in each range. The achievable level may be up to 20 % greater than the stated limit. 0.01 V/m to 380 V/m 240 MHz to 270 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 500 V/m 270 MHz to 350 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 575 V/m	
0.02 V/m to 1000 V/m 10 kHz to 300 MHz Anechoic Chambers The Listed Field levels are derived from the lowest unsaturated maximum power in each range. The achievable level may be up to 20 % greater than the stated limit. 0.01 V/m to 380 V/m 240 MHz to 270 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 500 V/m 270 MHz to 350 MHz 0.65 dB All probes and small active dipoles	
The Listed Field levels are derived from the lowest unsaturated maximum power in each range. The achievable level may be up to 20 % greater than the stated limit. 0.01 V/m to 380 V/m 240 MHz to 270 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 500 V/m 270 MHz to 350 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 575 V/m	
240 MHz to 270 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 500 V/m 270 MHz to 350 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 575 V/m	
0.01 V/m to 500 V/m 270 MHz to 350 MHz 0.65 dB All probes and small active dipoles 0.01 V/m to 575 V/m	
350 MHz to 500 MHz 0.65 dB All probes and small active dipoles	
0.01 V/m to 375 V/m 450 MHz to 550 MHz 0.62 dB All probes and small active dipoles	
0.01 V/m to 520 V/m 550 MHz to 750 MHz 0.62 dB All probes and small active dipoles	
0.01 V/m to 520 V/m 750 MHz to 950 MHz 0.62 dB All probes and small active dipoles	
0.01 V/m to 380 V/m 950 MHz to 1200 MHz 0.62 dB All probes and small active dipoles	
0.01 V/m to 720 V/m 1100 MHz to 1250 MHz 0.47 dB All probes and small active dipoles	
0.01 V/m to 800 V/m 1250 MHz to 1700 MHz 0.47 dB All probes and small active dipoles	
0.01 V/m to 920 V/m 1700 MHz to 2600 MHz 0.47 dB All probes and small active dipoles	
0.05 V/m to 1460 V/m 2.45 GHz to 2.7 GHz 0.40 dB All probes and small active dipoles	
0.05 V/m to 1860 V/m 2.7 GHz to 8.2 GHz 0.40 dB All probes and small active dipoles	

Assessment Manager: JG2 Page 16 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
Electric Field (continued)	0.05 V/m to 1610 V/m 8.2 GHz to 18 GHz 2.5 V/m to 590 V/m 18 GHz to 40 GHz 0.6 V/m to 194 V/m 40 GHz to 48 GHz 0.7 V/m to 23 V/m 48 GHz to 50 GHz	0.40 dB 0.35 dB 0.35 dB 0.35 dB	All probes and small active dipoles All probes and small active dipoles All probes and small active dipoles All probes and small active dipoles	
Magnetic Field	0.8 V/m to 44 V/m 50 GHz to 75 GHz	0.42 dB	All probes and small active dipoles TEM Cells The maximum frequency and field strength level are determined by the size of the	
	0.05 mA/m to 2.1 A/m 10 Hz to 100 Hz	1.4 dB	probe. Electrically small probes	
	0.05 mA/m to 2.1 A/m 100 Hz to 500 Hz	0.76 dB	Electrically small probes	
	0.05 mA/m to 2.1 A/m 500 Hz to 10 kHz	0.68 dB	Electrically small probes	
	0.05 mA/m to 2.1 A/m 10 kHz to 300 MHz	0.68 dB	Electrically small probes	
	The field levels shown below are derived from the lowest unsaturated maximum power in each range. The achievable level may be up to 20 % greater than the stated limit.		Anechoic Chambers	
	0.03 mA/m to 1.0 A/m 240 MHz to 270 MHz	0.65 dB	All probes and small active dipoles	
	0.03 mA/m to 1.3 A/m 270 MHz to 350 MHz	0.65 dB	All probes and small active dipoles	

Assessment Manager: JG2 Page 17 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
0.03 mA/m to 1.5 A/m 350 MHz to 500 MHz	0.65 dB	All probes and small active dipoles	
0.03 mA/m to 1.0 A/m 450 MHz to 550 MHz	0.62 dB	All probes and small active dipoles	
0.03 mA/m to 1.4 A/m 550 MHz to 750 MHz	0.62 dB	All probes and small active dipoles	
0.03 mA/m to 1.4 A/m 750 MHz to 950 MHz	0.62 dB	All probes and small active dipoles	
0.03 mA/m to 1.0 A/m 950 MHz to 1200 MHz	0.62 dB	All probes and small active dipoles	
0.03 mA/m to 1.9 A/m 1100 MHz to 1250 MHz	0.47 dB	All probes and small active dipoles	
0.03 mA/m to 2.1 A/m 1250 MHz to 1700 MHz	0.47 dB	All probes and small active dipoles	
0.03 mA/m to 2.4 A/m 1700 MHz to 2600 MHz	0.47 dB	All probes and small active dipoles	
	0.03 mA/m to 1.5 A/m 350 MHz to 500 MHz 0.03 mA/m to 1.0 A/m 450 MHz to 550 MHz 0.03 mA/m to 1.4 A/m 550 MHz to 750 MHz 0.03 mA/m to 1.4 A/m 750 MHz to 950 MHz 0.03 mA/m to 1.0 A/m 950 MHz to 1200 MHz 0.03 mA/m to 1.9 A/m 1100 MHz to 1250 MHz 0.03 mA/m to 2.1 A/m 1250 MHz to 1700 MHz	Range Measurement Uncertainty (k = 2) 0.03 mA/m to 1.5 A/m 350 MHz to 500 MHz 0.65 dB 0.03 mA/m to 1.0 A/m 450 MHz to 550 MHz 0.62 dB 0.03 mA/m to 1.4 A/m 550 MHz to 750 MHz 0.62 dB 0.03 mA/m to 1.4 A/m 750 MHz to 950 MHz 0.62 dB 0.03 mA/m to 1.0 A/m 950 MHz to 1200 MHz 0.62 dB 0.03 mA/m to 1.9 A/m 1100 MHz to 1250 MHz 0.47 dB 0.03 mA/m to 2.1 A/m 1250 MHz to 1700 MHz 0.47 dB 0.03 mA/m to 2.4 A/m 0.47 dB	Range Measurement Uncertainty (k = 2) Remarks 0.03 mA/m to 1.5 A/m 350 MHz to 500 MHz 0.65 dB All probes and small active dipoles 0.03 mA/m to 1.0 A/m 450 MHz to 550 MHz 0.62 dB All probes and small active dipoles 0.03 mA/m to 1.4 A/m 550 MHz to 750 MHz 0.62 dB All probes and small active dipoles 0.03 mA/m to 1.4 A/m 750 MHz to 950 MHz 0.62 dB All probes and small active dipoles 0.03 mA/m to 1.0 A/m 950 MHz to 1200 MHz 0.62 dB All probes and small active dipoles 0.03 mA/m to 1.9 A/m 1100 MHz to 1250 MHz 0.47 dB All probes and small active dipoles 0.03 mA/m to 2.1 A/m 1250 MHz to 1700 MHz 0.47 dB All probes and small active dipoles 0.03 mA/m to 2.4 A/m 1700 MHz to 2600 MHz 0.47 dB All probes and small active dipoles

Assessment Manager: JG2 Page 18 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
POWER FLUX DENSITY PULSE SIGNALS Service Reference EF01	The field levels shown below are derived from the lowest unsaturated maximum power in each range. The achievable level may be up to 20 % greater than the stated limit.		Pulse repetition frequency 200 Hz to 20 kHz. Pulse width 3 μ s to 100 μ s for f_c between 240 MHz and 2.6 GHz. Pulse width 1 μ s to 100 μ s for f_c between 2.45 GHz and 18 GHz.	
Power Flux Density and free space equivalent Magnetic Flux Density			Temperature 23 °C ± 2 °C	
	97 μW/cm² to 38 mW/cm² 240 MHz to 270 MHz	0.65 dB	Coaxial systems	
	97 μW/cm² to 65 mW/cm² 270 MHz to 350 MHz	0.65 dB		
	97 μW/cm² to 87 mW/cm² 350 MHz to 500 MHz	0.65 dB		
	97 μW/cm² to 37 mW/cm² 450 MHz to 550 MHz	0.63 dB		
	97 μW/cm² to 72 mW/cm² 550 MHz to 750 MHz	0.63 dB		Tedd
	97 μW/cm² to 72 mW/cm² 750 MHz to 950 MHz	0.63 dB		Teddiongton
	97 μW/cm² to 47 mW/cm² 950 MHz to 1200 MHz	0.63 dB		
	97 μW/cm² to 138 mW/cm² 1100 MHz to 1250 MHz	0.49 dB		
	97 μW/cm² to 170 mW/cm² 1250 MHz to 1700 MHz	0.49 dB		
	97 μW/cm² to 227 mW/cm² 1700 MHz to 2600 MHz	0.49 dB		
	0.6 mW/cm² to 5100 mW/cm² 2.45 GHz to 2.7 GHz	0.42 dB	Waveguide systems	
	0.6 mW /cm² to 3450 mW/cm² 2.7 GHz to 8.2 GHz	0.42 dB		
	0.5 mW /cm ² to 5900 mW/cm ² 8.2 GHz to 18 GHz	0.42 dB		

Assessment Manager: JG2 Page 19 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
POWER FLUX DENSITY PULSE SIGNALS Service Reference EF01 (continued)				
Electric Field	19.1 V/m to 380 V/m 240 MHz to 270 MHz	0.65 dB	Coaxial systems	
	19.1 V/m to 500 V/m 270 MHz to 350 MHz	0.65 dB		
	19.1 V/m to 575 V/m 350 MHz to 500 MHz	0.65 dB		
	19.1 V/m to 375 V/m 450 MHz to 550 MHz	0.63 dB		
	19.1 V/m to 520 V/m 550 MHz to 750 MHz	0.63 dB		
	19.1 V/m to 520 V/m 750 MHz to 950 MHz	0.63 dB		
	19.1 V/m to 420 V/m 950 MHz to 1200 MHz	0.63 dB		Teddi
	19.1 V/m to 720 V/m 1100 MHz to 1250 MHz	0.49 dB		Teddiongton
	19.1 V/m to 800 V/m 1250 MHz to 1700 MHz	0.49 dB		
	19.1 V/m to 925 V/m 1700 MHz to 2600 MHz	0.49 dB		
	47 V/m to 4350 V/m 2.45 GHz to 2.7 GHz	0.42 dB	Waveguide systems	
	47 V/m to 3600 V/m 2.7 GHz to 8.2 GHz	0.42 dB		
	44 V/m to 4700 V/m 8.2 GHz to 18 GHz	0.42 dB		

Assessment Manager: JG2 Page 20 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
POWER FLUX DENSITY PULSE SIGNALS Service Reference EF01 (cont'd) Magnetic Field	50.7 mA/m to 1.0 A/m		Coaxial systems	
Wagnetic Field	240 MHz to 270 MHz	0.65 dB	Odanai systems	
	50.7 mA/m to 1.3 A/m 270 MHz to 350 MHz	0.65 dB		
	50.7 mA/m to 1.5 A/m 350 MHz to 500 MHz	0.65 dB		
	50.7 mA/m to 1.0 A/m 450 MHz to 550 MHz	0.63 dB		
	50.7 mA/m to 1.4 A/m 550 MHz to 750 MHz	0.63 dB		
	50.7 mA/m to 1.4 A/m 750 MHz to 950 MHz	0.63 dB		=
	50.7 mA/m to 1.1 A/m 950 MHz to 1200 MHz	0.63 dB		Teddington
	50.7 mA/m to 1.9 A/m 1100 MHz to 1250 MHz	0.49 dB		on
	50.7 mA/m to 2.1 A/m 1250 MHz to 1700 MHz	0.49 dB		
	50.7 mA/m to 2.4 A/m 1700 MHz to 2600 MHz	0.49 dB		

Assessment Manager: JG2 Page 21 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
ANTENNA GAIN and ANTENNA FACTOR Service Reference EF03			All measurements are performed at 23 °C	
			Antenna Factor is calculated from the antenna gain	
Waveguide Feed	0 dB to 23 dB 2.6 GHz to 3.95 GHz	0.050 dB	Waveguide No 10	
	0 dB to 24 dB 3.3 GHz to 4.9 GHz	0.050 dB	Waveguide No 11A	
	0 dB to 25 dB 3.95 GHz to 5.85 GHz	0.050 dB	Waveguide No 12	
	0 dB to 26 dB 5.4 GHz to 8.2 GHz	0.050 dB	Waveguide No 14	
	0 dB to 27 dB 7.05 GHz to 10.0 GHz	0.050 dB	Waveguide No 15	
	0 dB to 28 dB 8.2 GHz to 12.4 GHz	0.050 dB	Waveguide No 16	
	0 dB to 29 dB 10.0 GHz to 15.0 GHz	0.050 dB	Waveguide No 17	Teddington
	0 dB to 29 dB 12.4 GHz to 18.0 GHz	0.040 dB	Waveguide No 18	ngton
	0 dB to 31 dB 18.0 GHz to 26.5 GHz	0.040 dB	Waveguide No 20	
	0 dB to 33 dB 26.5 GHz to 40.0 GHz	0.040 dB	Waveguide No 22	
	0 dB to 34 dB 33 GHz to 50 GHz 0 dB to 35 dB	0.060 dB	Waveguide No 12 Waveguide No 14 Waveguide No 15 Waveguide No 16 Waveguide No 17 Waveguide No 17 Waveguide No 18 Waveguide No 20 Waveguide No 22 Waveguide No 23	
	40 GHz to 60 GHz	0.10 dB	Waveguide No 24	
	0 dB to 36 dB 50 GHz to 75 GHz	0.10 dB	Waveguide No 25	
	0 dB to 37 dB 75 GHz to 110 GHz	0.10 dB	Waveguide No 27	
Coaxial Feed	0 dB to 28 dB 1 GHz to 18 GHz	0.050 dB	50 Ω APC-7 or Type N connectors	
	0 dB to 28 dB 1 GHz to 26.5 GHz	0.050 dB	50 Ω 3.5 mm connector	

Assessment Manager: JG2 Page 22 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
ANTENNA GAIN and ANTENNA FACTOR (continued)				
Coaxial Feed (continued)	0 dB to 28 dB 1 GHz to 40 GHz	0.090 dB	50 Ω 2.92 mm connector	
	0 dB to 28 dB 2.6 GHz to 50 GHz	0.10 dB	50 Ω 2.4 mm connector	
			Devices fitted with coaxial connectors other than those listed may be calibrated but the uncertainties may be increased	
EMC ANTENNA CALIBRATION Service Reference EF04			and an action and action action and action action and action action and action actio	
			Calibrations to meet the requirements of ANSI C63.5:2017 and CISPR 16-1-6	
			Includes the calibration of antennas supplied with fitted pre-amplifiers	
Waveguide Feed	0 dB to 21 dB 2.6 GHz to 3.95 GHz	0.70 dB	Waveguide No 10	Teddington
	0 dB to 22 dB 3.3 GHz to 4.9 GHz	0.70 dB	Waveguide No 11A	ngton
	0 dB to 23 dB 3.95 GHz to 5.85 GHz	0.70 dB	Waveguide No 12	
	0 dB to 24 dB 5.4 GHz to 8.2 GHz	0.70 dB	Waveguide No 14	
	0 dB to 25 dB 7.05 GHz to 10.0 GHz	0.70 dB	Waveguide No 15	
	0 dB to 26 dB 8.2 GHz to 12.4 GHz	0.70 dB	Waveguide No 16	
	0 dB to 27 dB 10.0 GHz to 15.0 GHz	0.70 dB	Waveguide No 17	
	0 dB to 28 dB 12.4 GHz to 18.0 GHz	0.70 dB	Waveguide No 18	
	0 dB to 30 dB 18.0 GHz to 26.5 GHz	0.70 dB	Waveguide No 20	
	0 dB to 31 dB 26.5 GHz to 40.0 GHz	0.70 dB	Waveguide No 22	
	0 dB to 31 dB 43.5 GHz to 45.5 GHz	0.70 dB	Waveguide No 23	

Assessment Manager: JG2 Page 23 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	
Coaxial Feed	0 dB to 28 dB 1 GHz to 18 GHz 0 dB to 30 dB 1 GHz to 26.5 GHz 0 dB to 30 dB 18 GHz to 40 GHz	0.80 dB (0.60 dB for conical log spiral antennas) 0.80 dB (0.60 dB for conical log spiral antennas) 0.80 dB	For coaxially fed antennas the antenna factor is calculated from the antenna gain. Devices fitted with coaxial connectors other than those listed above may be calibrated but the uncertainties may be increased. $\Omega \ \Omega \ 3.5 \ \text{mm}$ connectors $50 \ \Omega \ 3.5 \ \text{mm}$ connectors $\Omega \ \Omega \ 2.92 \ \text{mm}$ connectors	Teddington
CALIBRATION OF MAGNETIC LOOP ANTENNAS Service reference EF02 Magnetic Antenna Factor	Loop sensitivity: +110 dB to -40 dB 5 Hz to 100Hz 100Hz to 80 MHz	1.5 dB 1.0 dB	Calibration of passive and active loop antennas using a Crawford TEM Cell with spectrum analysers or test receivers. The results may be expressed in terms of dB(pT/μV) or dB(S/m). Loop diameters between 4 cm and 90 cm may be accommodated.	

Assessment Manager: JG2 Page 24 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
ANTENNA COMPLEX REFLECTION COEFFICIENT	0 to 0.5, real and imaginary parts, higher reflections with increased uncertainty.		The uncertainties for complex reflection coefficient apply to both real and imaginary parts. All measurements are performed at 23 °C	
Waveguide feed	2.6 GHz to 3.95 GHz 3.3 GHz to 4.9 GHz 3.95 GHz to 5.85 GHz 5.4 GHz to 8.2 GHz 7.05 GHz to 10 GHz 8.2 GHz to 12.4 GHz 10 GHz to 15 GHz 12.4 GHz to 18 GHz 18 GHz to 26.5 GHz 26.5 GHz to 40 GHz 33 GHz to 50 GHz 40 GHz to 60 GHz 50 GHz to 75 GHz 75 GHz to 110 GHz	0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.013 0.015 0.015	Waveguide No 10 Waveguide No 11A Waveguide No 12 Waveguide No 14 Waveguide No 15 Waveguide No 16 Waveguide No 17 Waveguide No 18 Waveguide No 20 Waveguide No 22 Waveguide No 23 Waveguide No 24 Waveguide No 25 Waveguide No 25 Waveguide No 27	
7 mm coaxial feed	1 GHz to 1.5 GHz 1.5 GHz to 18 GHz 1 GHz to 8.2 GHz 8.2 GHz to 18 GHz	0.015 0.011 0.013 0.018	50 Ω Type N connectors 50 Ω Type N connectors 50 Ω GPC-7 connectors 50 Ω GPC-7 connectors	Тес
3.5 mm coaxial feed	1 GHz to 8.2 GHz 8.2 GHz to 18 GHz 18 GHz to 26.5 GHz	0.010 0.020 0.029	50 Ω GPC-3.5 connectors 50 Ω GPC-3.5 connectors 50 Ω GPC-3.5 connectors	Teddington
2.92 mm coaxial feed	1 GHz to 26.5 GHz 26.5 GHz to 40 GHz	0.028 0.043	50 Ω 2.92 mm connectors 50 Ω 2.92 mm connectors	
2.4 mm coaxial feed	1 GHz to 26.5 GHz 26.5 GHz to 40 GHz 40 GHz to 50 GHz	0.021 0.041 0.056	$50~\Omega$ 2.4 mm connectors $50~\Omega$ 2.4 mm connectors $50~\Omega$ 2.4 mm connectors	
			Devices fitted with coaxial connectors other than those listed above may be calibrated but the uncertainties may be increased.	
ANTENNA FACTOR Service Reference: EF06	-30 dB/m to +80 dB/m		Calibrations to meet the requirements of ARP 958, ANSI C63.5 (2006 & 2017), CISPR 16-1-6.	
Linear dipole	20 MHz to 500 MHz 500 MHz to 1000 MHz	0.35 dB 0.50 dB	Defined height, tuned element	
Linear dipole	20 MHz to 40 MHz 40 MHz to 1000 MHz	0.70 dB 0.50 dB	Free-space, tuned element	

Assessment Manager: JG2 Page 25 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code Teddington
ANTENNA FACTOR (continued)	-30 dB/m to +80 dB/m		Calibrations to meet the requirements of ARP 958, ANSI C63.5 2017, CISPR 16-1-6.	
Biconical antenna	20 MHz to 300 MHz	0.50 dB	Free-space or defined height (vs. SRDs)	
Mini-Biconical antenna LPDA antenna LPDA antenna	300 MHz to 6 GHz 80 MHz to 200 MHz 200 MHz to 6 GHz	0.50 dB 0.70 dB 0.50 dB 1.0 dB	Free-space Free-space Free-space	
Biconical, Hybrid and LPDA Hybrid antenna Spiral antenna	20 MHz to 1 GHz 20 MHz to 6 GHz 100 MHz to 1 GHz	0.70 dB 1.0 dB	Standard Site method, horizontal ANSI C63.5 2017 Free-space Free-space	
Horn antenna	200 MHz to 2 GHz	1.0 dB	Free-space	
DUAL ANTENNA FACTOR			For use in NSA measurements	
Biconical, LPDA and hybrid antennas Biconical, LPDA and hybrid	30 MHz to 1000 MHz 30 MHz to 1000 MHz	1.0 dB 1.5 dB	Standard Site method, horizontal polarisation Standard Site method, vertical	
antennas			polarisation	
Antenna Balance (Symmetry)	30 MHz to 300 MHz For values within ± 2 dB	0.25 dB	ANSI C 63.5 2017 and CISPR 16-1-4	
REFLECTION COEFFICIENT \$11	Gamma: 0 to 1 0.3 MHz to 6 GHz	0.050	$50~\Omega$ Type N connectors. Devicess with other coaxial connectors can be calibrated but the uncertainty may be increased.	Teddingto
VSWR (Derived from S11)	0.3 MHz to 6 GHz For VSWR value = 1.1 For VSWR value = 1.2 For VSWR value = 2.5 For VSWR value = 3 For VSWR value = 5	0.031 0.033 0.15 0.19 0.44	Uncertainty will be increased for VSWR >5	ň
Rod antenna	100 Hz to 100 MHz	1.0 dB	Plane wave E-field	
Service Reference: EF11		1.2 dB	ECSM	
RADIATION PATTERNS Service Reference: EF13	Gain < +10 dBi			
	500 MHz to 18 GHz	0.35 dB	From 0 dB to -6 dB, relative to maximum level.	
	500 MHz to 18 GHz	1.0 dB	From -6 dB to -15 dB, relative to maximum level.	
	Note: other parameters may be derived from pattern data, such as Directivity and Efficiency. The uncertainty is related to the change in gain relative to its maximum value.			
E-field emitters CNE, Comb Generator etc.	30 MHz to 6 GHz 10 kHz to 6 GHz	1.5 dB 1.0 dB	Radiated, depends on SNR Conducted	

Assessment Manager: JG2 Page 26 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

ATTENUATION Service Reference EG03 Comparison with inductive voltage divider using down-conversion techniques. 50 Ω 14 mm Coaxial Line (GR-900 connector) up to 8 GHz.	Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
50 \(\Omega \) 7 mm Coaxial Line: Standard N-Type connector up to 12.4 GHz; Precision N-type 3.5mm, 2.92 mm, 2.94 mm and GPC-7 connectors to 18 GHz. 0.5 MHz to 180 dB 0.5 MHz to 100 MHz 120 dB to 130 dB 0.5 MHz to 100 MHz (0.0010 dB per 10 dB) NOTE The uncertainties for attenuation apply to the measurement of a device that is well matched to the ideal characteristic impedance of the transmission line system. The quoted uncertainty will be increased for other devices to account for mismatch and repeatability, when these contributions exceed those which have been allowed for in this Schedule.	Instrument or Gauge ATTENUATION Service Reference EG03	0 dB to 100 dB 0.5 MHz to 18 GHz 100 dB to 120 dB 0.5 MHz to 100 MHz 120 dB to 130 dB	(0.00060 dB per 10 dB) + 0.00060 dB 0.00080 dB per 10 dB	Comparison with inductive voltage divider using down-conversion techniques. 50 Ω 14 mm Coaxial Line (GR-900 connector) up to 8 GHz. 50 Ω 7 mm Coaxial Line: Standard N-Type connector up to 12.4 GHz; Precision N-type 3.5mm, 2.92 mm, 2.4 mm and GPC-7 connectors to 18 GHz. NOTE The uncertainties for attenuation apply to the measurement of a device that is well matched to the ideal characteristic impedance of the transmission line system. The quoted uncertainty will be increased for other devices to account for mismatch and repeatability, when these contributions exceed those which have been allowed for in	Location Teddington Code

Assessment Manager: JG2 Page 27 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
RF POWER Service Reference EG04			The uncertainties for waveguide and coaxial systems may be increased for devices fitted with other coaxial or waveguide connector types e.g. GPC-7, 3.5 mm, 2.92 mm, 2.4 mm etc. to account for adaptor corrections. Or if the SVRC of the submitted item is ≥ 0.1 . Measurements can be provided as either Absolute, DC or RF referenced.	
Absolute power in coaxial line	0.1 mW to 10 mW (-10 dBm to +10 dBm)	0.0025 mW/W	Measurement of a reference power output of a power source at nominal 50 MHz which has 50 Ω type N connector. Direct power measurement method with standard power sensor. Absolute value of magnitude of the source voltage reflection coefficient should be ≤ [0.1].	
Source voltage reflection coefficient (SVRC)	-0.1≤ SVRC ≤ +0.1	0.010	Measurement at nominal 50 MHz which has 50 Ω type N connector. Reflection Phase should be 0° \pm 40° or 180° \pm 40°.	Teddington
Calibration factor and effective efficiency - guided wave systems	Nominal power range 0.1 mW to 10 mW (-10 dBm to 10 dBm)			Ön
	18.0 GHz to 26.5 GHz 26.5 GHz to 40.0 GHz 40 GHz to 50 GHz 50.0 GHz to 75 GHz 75 GHz to 110.0 GHz	5.0 mW/W 5.0 mW/W 9.0 mW/W 12.0 mW/W	Waveguide No 20 Waveguide No 22 Waveguide No 23 Waveguide No 25 Waveguide No 27	

Assessment Manager: JG2 Page 28 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
RF POWER Service Reference EG04			The uncertainties for waveguide and coaxial systems may be increased for devices fitted with other coaxial or waveguide connector types e.g. GPC-7, 3.5 mm, 2.92 mm, 2.4 mm etc. to account for adaptor corrections. Or if the SVRC of the submitted item is ≥ 0.1 . Measurements can be provided as either Absolute, DC or RF referenced.	
Absolute power in coaxial line	0.1 mW to 10 mW (-10 dBm to +10 dBm)	0.0025 mW/W	Measurement of a reference power output of a power source at nominal 50 MHz which has 50 Ω type N connector. Direct power measurement method with standard power sensor. Absolute value of magnitude of the source voltage reflection coefficient should be ≤ 0.1 .	
Source voltage reflection coefficient (SVRC)	-0.1≤ SVRC ≤ +0.1	0.010	Measurement at nominal 50 MHz which has 50 Ω type N connector. Reflection Phase should be 0° ± 40° or 180° ± 40°.	Tedd
Calibration factor and effective efficiency - guided wave systems	Nominal power range 0.1 mW to 10 mW (-10 dBm to 10 dBm)			Teddington
	18.0 GHz to 26.5 GHz 26.5 GHz to 40.0 GHz 40 GHz to 50 GHz 50.0 GHz to 75 GHz 75 GHz to 110.0 GHz	5.0 mW/W 5.0 mW/W 9.0 mW/W 12.0 mW/W 16.0 mW/W	Waveguide No 20 Waveguide No 22 Waveguide No 23 Waveguide No 25 Waveguide No 27	
Calibration factor and effective efficiency - coaxial line system	Nominal power range 0.01 mW to 10 mW (-10 dBm to +10 dBm) 10 kHz to 1 MHz 1 MHz to 10 MHz 10 MHz to 100 MHz 100 MHz to 4 GHz 4 GHz to 8 GHz 8 GHz to 12 GHz 12 GHz to 15 GHz 15 GHz to 18 GHz	5.5 mW/W 5.5 mW/W 2.0 mW/W 3.2 mW/W 3.4 mW/W 4.1 mW/W 5.2 mW/W 6.0 mW/W	Calibration of 7 mm power sensors and thermistor mounts against the NPL 7 mm calorimeter. The uncertainties apply to devices with type N connectors with VRC less than 0.01 in a 50 Ω coaxial system. The uncertainties may be increased for devices with a higher VRC or fitted with other connector types (GPC-7, 3.5 mm 2.92 mm, 2.4 mm).	

Assessment Manager: JG2 Page 29 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
COMPLEX REFLECTION COEFFICIENT (in support of Attenuation and Power calibrations)			Using VNA techniques	
Magnitude	0 to 1.0 2.6 GHz to 3.95 GHz 3.3 GHz to 4.9 GHz 3.95 GHz to 5.85 GHz 5.85 GHz to 8.2 GHz 7.05 GHz to 10.0 GHz 8.2 GHz to 12.4 GHz 10.0 GHz to 15.0 GHz 12.4 GHz to 18.0 GHz 18.0 GHz to 26.5 GHz 26.5 GHz to 40.0 GHz 40.0 GHz to 50 GHz 60.0 GHz to 62 GHz 75 GHz to 110 GHz 10 kHz to 18 GHz	0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040	Waveguide No 10 Waveguide No 11A Waveguide No 12 Waveguide No 14 Waveguide No 15 Waveguide No 16 Waveguide No 17 Waveguide No 18 Waveguide No 20 Waveguide No 22 Waveguide No 23 Waveguide No 25 Waveguide No 27 50 Ω APC-7 or Type N Connectors.	Teddington
Phase	10 kHz to 26.5 GHz -180° to +180° Frequency range as for Magnitude	o.0050 sin ⁻¹ (magnitude uncertainty) ^o magnitude	$50\Omega3.5$ mm connectors. Measurements may be made up to 33 GHz however the uncertainties may be increased. If the magnitude is less than its uncertainty, then the phase uncertainty is 180°	

Assessment Manager: JG2 Page 30 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
Time offset Time offset Frequency	lined oscillators and frequency sta From UTC (NPL) From UTC 5 MHz and 10 MHz	2.0 ns 10 ns 5.0 x 10 ⁻¹⁴ Minimum measurement period 24 hours.	Calibration of frequency standards with a 1 pulse per second output can also be undertaken.	Teddington
Time delay (coaxial cables)	0 ns to 300 ns	1.0 ns	For cable characterisation in support of GPSDO calibration.	
Service Reference TT04 Remote characterisation of GF Time offset Time offset Time offset Frequency	PS disciplined oscillators and frequest Weekly values relative to UTC (NPL) Weekly values relative to estimated UTC Post-processed values relative to corrected UTC data 5 MHz and 10 MHz	ency standards 20 ns 40 ns 10 ns 1.0 x 10 ⁻¹³ Minimum measurement period 24 hours.	The capability relates to a remote common-view service where NPL-supplied software gathers data and returns it to NPL for processing. The user is supplied with instructions for the setting up of the equipment and the antenna. Calibration of frequency standards with a 1 pps output can also be undertaken.	Customers' sites

Assessment Manager: JG2 Page 31 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

									E	kpand	ed							
	ured Qu nent or				Ra	nge			Measurement Uncertainty (k = 2))		Re	emark	Location Code		
Primary Impedance Measurement System (PIMMS) Service Reference EG02																		
NOTES										<u>- </u>								
For the linear Schedule, the alevel of cound simultar uncertainty, expanded uncertainty of the voltage interval is purised by the country of the voltage interval is purised by the voltage interval in voltage.	ne uncerta onfidence neously to in the ap- ncertainty Reflection resented a of the r	ainty is sof appropriate or both the propriate or The confination of the confination of the propriate application of the confination of the propriate of the pr	shown a eximate ne Real e comporrespo cients (ele for a VTC , s	as an interpretation in the second in the se	terval of Further aginary parameter value wi the state in the ra rtainty in	values, more, a parts of plane, ill not be ed unce ange 0 ≤ atervals	where a selecte the S-pa centred e less the rtainty is	a selection as selection on the can 2.5. a assum 1. For sented to	ed value within the reduced the measure med here or Voltage for select	e within the inter uncerta ed, quot e to be in ge Trans cted, rep	the interval will inty valuated, meandependemission or seem ta	rval represe ue there an value dent of the Coefficative, va	resents nt the u fore def e with ra the nom cients (\ lues of	an expa ncertain fines a c adius eq inal VR /TCs), tl VTC in	anded u ty applic ircular r ual to th C , so a ne state the ran	ncertain ed equa region of ne stated a single ed uncer ge	ty at lly f d	
Voltage Re									ms. Me	easuren	nents m	nay be i	made u	sing oth	ner 50 🛭	Ω coaxia	al	
connector t	ypes, bu	t tne qu	otea ui	ncertair	ities ma	y be inc	creased		requen	cv (GH	7)							•
Connector Type	VRC	0.01	0.02	0.04	0.045	0.05	0.07	0.09	0.1	0.2	0.3	0.5	1.0	1 to 7.5	7.5 to 8.5	8.5 to 18	18 to 26.5	
7-16	0 to 0.5				0.002	0.002	0.002	0.002	0.002	0.002	0.0015	0.0015	0.001	0.001				
7-16	0.5 to 0.7				0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.002	0.002	0.002	0.002				Te
7-16	0.8				0.003	0.003	0.003	0.003	0.003	0.003	0.0025	0.0025	0.0025	0.0025				Teddington
7-16	0.9				0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.003	0.003	0.003	0.003				ngt
7-16	1.0				0.004	0.004	0.004	0.004	0.004	0.004	0.0035	0.0035	0.0035	0.0035				Š
GR900	0 to 0.5				0.002	0.002	0.002	0.002	0.002	0.002	0.0015	0.0015	0.001	0.001	0.001			
GR900	0.5 to 0.7				0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.002	0.002	0.002	0.002	0.002			
GR900	0.8				0.003	0.003	0.003	0.003	0.003	0.003	0.0025	0.0025	0.0025	0.0025	0.0025			
GR900	0.9				0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.003	0.003	0.003	0.003	0.003			
GR900	1.0				0.004	0.004	0.004	0.004	0.004	0.004	0.0035	0.0035	0.0035	0.0035	0.0035			
GPC-7	0 to 0.6	0.0055	0.0045	0.004	0.004	0.004	0.004	0.0035	0.0035	0.0035	0.003	0.003	0.0025	0.0025	0.0025	0.0025		
GPC-7	0.6 to 0.8	0.0055	0.005	0.0045	0.0045	0.0045	0.0045	0.004	0.004	0.004	0.0035	0.0035	0.003	0.003	0.003	0.003		
GPC-7	0.9	0.006	0.0055	0.005	0.005	0.005	0.005	0.0045	0.0045	0.0045	0.004	0.004	0.004	0.0035	0.0035	0.0035		
GPC-7	1.0	0.0065	0.0055	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.0045	0.0045	0.0045	0.004	0.004	0.004		
Type-N	0 to 0.6	0.0055	0.0045	0.004	0.004	0.004	0.004	0.0035	0.0035	0.0035	0.003	0.003	0.0025	0.0025	0.0025	0.0025		
Type-N	0.6 to 0.8	0.0055	0.005	0.0045	0.0045	0.0045	0.0045	0.004	0.004	0.004	0.0035	0.0035	0.003	0.003	0.003	0.003		
Type-N	0.8	0.006	0.0055	0.005	0.005	0.005	0.005	0.0045	0.0045	0.0045	0.004	0.004	0.004	0.0035	0.0035	0.0035		
Type-N	1.0	0.0065	0.0055	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.0045	0.0045	0.0045	0.004	0.004	0.004		
3.5 mm	0 to 0.8				0.01	0.0095	0.009	0.0085	0.008	0.007	0.007	0.0065	0.006	0.005	0.005	0.005	0.005	
	0.0	į.			I	I	1	1	l	ı	l	ı	ı	1	l	1	ı	

Assessment Manager: JG2 Page 32 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quanti Instrument or Gau		R	Range	Expanded Measurement Uncertainty (k = 2	2)	Re	emarks	Location Code			
	•		-	nent System (PIMMS) (con							
	Vol	tage Reflec	tion Coefficient Mac	gnitude (VRC) in wavegui	de systems						
Waveguide size				Frequency (GHz)	T		1				
R70		to 8.2 001	8.2 to 12.4	12.4 to 18	18 to	26.5	26.5 to 40				
R100	0.0	001	0.001								
R140				0.0015			j				
R220					0.0	015	0.000				
R320				(I) (TO)			0.003	4			
	Voltag			ignitude (VTC) in 50 Ω co	axial systen	ns		_			
Connector Type	!		and corresponding ertion loss (dB)	Frequency		Minimum	uncertainty (VTC)				
7-16			1 (0 dB)	10 MHz to 7.5			0.00040				
7-16 7-16			0.316 (10 dB) 0.1 (20 dB)	10 MHz to 7.5 10 MHz to 7.5			0.00035 0.00020				
7-16			0.1 (20 dB) 0.0316 (30 dB)	10 MHz to 7.5			0.00020				
7-16			0.01 (40 dB)	10 MHz 100 N			0.00010				
7-16			0.01 (40 dB)	100 MHz to 7.5	GHz		0.00005				
7-16		0.	00316 (50 dB)	10 MHz to 100	10 MHz to 100 MHz 0.00010			10 MHz to 100 MHz 0.00010		0.00010	
7-16		0.	00316 (50 dB)	100 MHz to 7.5	100 MHz to 7.5 GHz 0.00004		0.00004				
14 mm			1 (0 dB)	45 MHz to 8.5	GHz		0.00040	Teddington			
14 mm			D.316 (10 dB)	45 MHz to 8.5	GHz		0.00035				
14 mm			0.1 (20 dB)	45 MHz to 8.5	GHz		0.00020	ng			
14 mm			.0316 (30 dB)	45 MHz to 8.5			ξ				
14 mm			0.01 (40 dB)	45 MHz 100 N			0.00010	_			
14 mm			0.01 (40 dB)	100 MHz to 8.5			0.00005				
14 mm 14 mm			00316 (50 dB) 00316 (50 dB)	45 MHz to 100 100 MHz to 8.5			0.00010 0.00004				
1711111		0.	00310 (30 dB)	100 Wii 12 to 0.5	OFIZ		0.00004				
Type-N			1 (0 dB)	10 MHz to 18	GHz		0.00040				
Type-N			0.316 (10 dB)	10 MHz to 18 (GHz		0.00035				
Type-N			0.1 (20 dB)	10 MHz to 18 (0.00020				
Type-N			.0316 (30 dB)	10 MHz to 18 (0.00010				
Type-N			0.01 (40 dB)	10 MHz to 100			0.00010				
Type-N Type-N			0.01 (40 dB) 00316 (50 dB)	100 MHz to 18 10 MHz to 100			0.00005 0.00010				
Type-N			00316 (50 dB)	100 MHz to 18			0.00010				
3.5 mm			1 (0 dB)	45 MHz to 26.5	GHz		0.0010				
3.5 mm		(D.316 (10 dB)	45 MHz to 26.5			0.00040				
3.5 mm			0.1 (20 dB)	45 MHz to 100			0.00025				
3.5 mm			0.1 (20 dB)	100 MHz to 26.5			0.00020				
3.5 mm			.0316 (30 dB)	45 MHz to 100			0.00015				
3.5 mm			0.0316 (30 dB)	100 MHz to 26.5			0.00010				
3.5 mm 3.5 mm			0.01 (40 dB) 0.01 (40 dB)	45 MHz to 100 100 MHz to 26.5			0.00006 0.00005				
3.5 mm			00316 (50 dB)	45 MHz to 100	_		0.00003				
3.5 mm			00316 (50 dB)	100 MHz to 26.5			0.00010				

Assessment Manager: JG2 Page 33 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
		ment System (PIMMS) (continued		-
Vo	-	agnitude (VTC) in waveguide sy	stems	
Waveguide size	VTC and corresponding insertion loss (dB)	Frequency	Minimum uncertainty (VTC)	_
R100 R100 R100 R100	1 (0 dB) 0.316 (10 dB) 0.1 (20 dB) 0.0316 (30 dB)	8.2 GHz to 12.4 GHz 8.2 GHz to 12.4 GHz 8.2 GHz to 12.4 GHz 8.2 GHz to 12.4 GHz	0.0010 0.00040 0.00020 0.00010	
R100	0.01 (40 dB)	8.2 GHz to 12.4 GHz	0.00006	
R100	0.00316 (50 dB)	8.2 GHz to 12.4 GHz	0.00004	
R140 R140 R140 R140 R140 R140	1 (0 dB) 0.316 (10 dB) 0.1 (20 dB) 0.0316 (30 dB) 0.01 (40 dB) 0.00316 (50 dB)	12.4 GHz to 18 GHz 12.4 GHz to 18 GHz	0.0025 0.00075 0.00030 0.00010 0.00006 0.00004	
R220 R220 R220 R220 R220 R220	1 (0 dB) 0.316 (10 dB) 0.1 (20 dB) 0.0316 (30 dB) 0.01 (40 dB) 0.00316 (50 dB)	18 GHz to 26.5 GHz 18 GHz to 26.5 GHz	0.0030 0.00075 0.00030 0.00010 0.00006 0.00004	Teddington
R320 R320 R320 R320 R320 R320 R320	1 (0 dB) 0.316 (10 dB) 0.1 (20 dB) 0.0316 (30 dB) 0.01 (40 dB) 0.00316 (50 dB)	26.5 GHz to 40 GHz 26.5 GHz to 40 GHz	0.0030 0.00075 0.00030 0.00010 0.00006 0.00004	5
Mechanically-derived characteristic impedance of the following coaxial lines:				
7-16 14 mm Type-N Type-N or GPC-7 Type-N Type-N 3.5 mm 2.92 mm 2.4 mm	49.8 Ω to 50.2 Ω 49.8 Ω to 50.2 Ω 27.7 Ω to 28.3 Ω 49.6 Ω to 50.4 Ω 74.4 Ω to 75.6 Ω 99.2 Ω to 100.8 Ω 49.2 Ω to 50.8 Ω 48.9 Ω to 50.9 Ω 48.9 Ω to 51.4 Ω	0.009 Ω 0.010 Ω 0.018 Ω 0.016 Ω 0.031 Ω 0.078 Ω 0.038 Ω 0.048 Ω 0.063 Ω	Based on measurements of the diameters of airline conductors, these and associated uncertainties will also be reported. These measurements are made using air gauging techniques.	

Assessment Manager: JG2 Page 34 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)		Remarks	Location Code
LOW FREQUENCY COMPLEX REFLECTION COEFFICIENT Service Reference EG02				Using VNA techniques.	
Voltage Reflection Coefficient Magnitude (VRC) in 50 Ω coaxial systems, using the following connector types: GPC-7 GPC-7 GPC-7 GPC-7 GPC-7 GPC-7 GPC-7 GPC-7 GPC-9 GR900 / 14 mm Type-N Type-N Type-N Type-N Type-N Type-N Type-N	0 0.05 0.13 0.33 1 0 0.05 0.13 0.33 1 0 0.05 0.13 0.33	9 kHz to 10 MHz 0.0022 0.0022 0.0022 0.0021 0.0031 0.0030 0.0030 0.0030 0.0050 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	10 MHz to 100 MHz 0.0022 0.0022 0.0022 0.0020 0.0027 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	The capabilities are shown as a representative selection of values, each of which represents an expanded uncertainty at a level of confidence of approximately 95 %. Intermediate values may also be reported, with linear interpolation of the uncertainties. Each value represents the uncertainty applied equally and simultaneously to both the Real and Imaginary parts of the S-parameter. The uncertainty therefore defines a circular region, in the appropriate complex S-parameter plane, centred on the measured, quoted, mean value with radius equal to the stated expanded uncertainty. The corresponding k value will not be less than 2.5.	Teddington
3.5 mm 3.5 mm 3.5 mm 3.5 mm 3.5 mm 2.92 mm / K-Connector 2.92 mm / K-Connector 2.92 mm / K-Connector 2.92 mm / K-Connector	0 0.05 0.13 0.33 1 0 0.05 0.13	0.0034 0.0034 0.0033 0.0031 0.0044 0.011 0.011 0.011	0.0034 0.0034 0.0033 0.0031 0.0042 0.011 0.011 0.011	Measurements may be made using other 50 Ω coaxial connector types, but the quoted uncertainties may be increased.	
2.92 mm / K-Connector 2.92 mm / K-Connector 2.4 mm 2.4 mm 2.4 mm	0 0 0.05	0.010 0.011 0.0096 0.0096 0.0096	0.010 0.011 0.0095 0.0095 0.0092		

Assessment Manager: JG2 Page 35 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
LENGTH			All linear calibrations may be given in inch units	
Gauge blocks: millimetre Service Reference: LD01	As BS EN ISO 3650:1999 0.5 mm to 25 mm 25 mm to 50 mm 50 mm to 75 mm 75 mm to 100 mm	Q[19, 0.21 <i>L</i>] nm, <i>L</i> in mm 20 nm 20 nm to 22 nm 22 nm to 25 nm 25 nm to 29 nm	Measurement of central length by interferometry for gauges of length <i>L</i> (in mm, or inch). Measured twice, wrung to a platen by each of the two measuring faces in turn, and the mean of these two measurements stated on the certificate.	
Gauge blocks: inch Service Reference: LD01	As BS 4311:2007 0.01 inch to 0.4 inch 0.4 in to 1 inch 2 inch 3 inch 4 inch	Q[0.75, 0.21 L] μ inch, L in inch 0.76 μ inch 0.76 μ inch to 0.78 μ inch 0.86 μ inch 0.98 μ inch 1.13 μ inch		
Gauge blocks: millimetre Service Reference: LD01	As BS EN ISO 3650:1999 0.5 mm to 10 mm 10 mm to 25 mm 25 mm to 50 mm 50 mm to 75 mm 75 mm to 100 mm	Q[32 ,0.76 <i>L</i>] nm, <i>L</i> in mm 32 nm to 33 nm 33 nm to 37 nm 37 nm to 50 nm 50 nm to 66 nm 66 nm to 83 nm	Measurement of central length by mechanical comparison with gauge block of similar size, for gauges of length <i>L</i> (in mm)	
	0.5 mm to 100 mm	40nm	Measurement of variation in length by mechanical comparison	Teddington
Gauge blocks: inch Service Reference: LD01	As BS 4311:2007 0.01 inch to 0.4 inch 0.4 inch to 1 inch 2 inch 3 inch 4 inch	Q[1.26, 0.76 <i>L</i>] μ inch, <i>L</i> in inch 1.26 μ inch to 1.30 μ inch 1.30 μ inch to 1.47 μ inch 1.97 μ inch 2.60 μ inch 3.29 μ inch)ton
	0.01 inch to 4 inch	1.57 μ inch	Measurement of variation in length by mechanical comparison	
Long gauge blocks: millimetre Service Reference: LD02	As BS EN ISO 3650:1999 Grades K, 0 and 1 Above 100 mm to 1000 mm	(120 + 0.26 <i>L</i>) nm, <i>L</i> in mm 147 nm to 383 nm	Measurement of central length by interferometric comparison of long gauge blocks of length <i>L</i> (in mm) to the stated standards.	
1-D artefacts [Long gauge blocks and length bars]: length millimetre (and inch) Service Reference: LD02	As BS EN ISO 3650:1999 Grades K, 0 and 1; As BS 5317:1976 Reference and calibration grades 100 mm to 1200 mm	Q[120, 0.14 <i>L</i>] nm, <i>L</i> in mm 122 nm to 237 nm	Measurement of central length by CMM substitution method of gauges of length <i>L</i> (in mm).	
1-D artefacts [Long gauge blocks and length bars]: length millimetre (and inch) Service Reference: LD02	As BS EN ISO 3650:1999 Grades K, 0 and 1; As BS 5317:1976 Reference and calibration grades 100 mm to 1200 mm	Q[410, 2.0 <i>L</i>] nm, <i>L</i> in mm 457 nm to 2435 nm	Measurement of central length by CMM method of gauges of length <i>L</i> (in mm).	

Assessment Manager: JG2 Page 36 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
LENGTH (continued)				
Length bars and long gauge blocks: millimetre (and inch) Service Reference: LD05	As BS EN ISO 3650:1999 Grades K, 0 and 1	Q[49, 0.083 L] nm, L in mm, or Q[1.9, 0.083 L] μ inch, L in inch	Measurement of central length by absolute interferometry of long gauge blocks of length <i>L</i> (in mm, on inch) to the stated standards.	
	Above 100 mm to 1000 mm Above 4 inch up 48 inch	50 nm to 97 nm 1.93 μ inch to 4.42 μ inch	stanuarus.	
Length bars: millimetre Service reference: LD02	As BS 5317:1976; Reference	I and calibration grades		
Service reference. LD02	10 mm to 100 mm	Q[60, 0.21 <i>L</i>] nm, <i>L</i> in mm <i>i.e.</i> 61 nm to 64 nm	Measurement of length by absolute interferometry of length bars of length L (in mm).	
	Above 100 mm to 1200 mm	(120 + 0.26 <i>L</i>) nm, <i>L</i> in mm <i>i.e.</i> 146 nm to 436 nm	Measurement of length by interferometric comparison of length bars of length L (in mm)	
Length bars: Inch Service Reference: LD02	As BS 1790:1961; Reference	l and calibration grades		_
	0.5 inch to 4 inch	Q[2.36, 0.21 <i>L</i>] μ inch, <i>L</i> in inch <i>i.e.</i> 2.37 μ inch to 2.51 μ inch	Measurement of length by absolute interferometry of length bars of length <i>L</i> (in inches).	Teddington
	Above 4 inch to 48 inch	(4.57 + 0.26 <i>L</i>) μ inch, <i>L</i> in inch	Measurement of length by interferometric comparison of long gauge blocks of length <i>L</i> (in inches) to the stated standards	
Gauge blocks and length bars Thermal expansion coefficient at 20 °C Service Reference: LD03	Expansion coefficient 9 x 10 ⁻⁶ K ⁻¹ to 13 x 10 ⁻⁶ K ⁻¹	(0.004 + 11/L + 0.000 007L) × 10 ⁻⁶ K ⁻¹ , L in mm	The uncertainty applies to the measurement of the linear coefficient of thermal expansion, at 20 °C, of long series gauge blocks and length bars above 100 mm, up to 1200 mm (4 inch to 48 inch) which comply with the following standards:	
			Reference and calibration grades of BS 1790:1961 (inch). Reference and calibration grades of BS 5317:1976 (millimetre). Grades K, 0 of ISO 3650:1998.	

Assessment Manager: JG2 Page 37 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
LENGTH (continued)				
Step gauges Service Reference: LD04	210 mm to 1020 mm	(100 + 0.23 <i>L</i>) nm, <i>L</i> in mm		
Thread measuring cylinders Service Reference: LD07	0.05 mm to 5 mm diameter	(0.080 + 0.0010 <i>D</i>) µm <i>D</i> : diameter in mm	As BS 3777:1964 BS 5590:1978 and specials	
External cylinder	0.1 mm to 100 mm diameter	(0.070 + 0.0011 <i>D</i>) µm, <i>D</i> in		
Plain plug gauges (parallel) reference cylinders and rollers Service Reference: LD07	100 mm to 150 mm diameter	mm (0.050 + 0.0014 <i>D</i>) μm, <i>D</i> in mm		
Plain setting rings (parallel) Service Reference: LD07	3 mm to 250 mm diameter	(0.070 + 0.0005 <i>D</i>) μm, <i>D</i> in mm	As BS 4064:1966 and BS 4065:1966 Grade AA, and equivalent quality setting rings	
Stage micrometers and graticules Service Reference: LR04	0 mm to 50 mm 50 mm to 100 mm 100 mm to 150 mm	0.20 μm 0.30 μm 0.40 μm		Teddington
Linewidth standards Service Reference: LR03	0.5 μm to 10 μm 10 μm to 50 μm	0.050 μm 0.10 μm		yton
Reference stage graticules for image analysers Service Reference: LR07	Grid sizes 0 to 400 µm × 400 µm Spot sizes	0.10 μm		
	3 μm to 48 μm	0.10 μm		
Reference master screw plug and ring gauges to API specification 7 Service Reference: LD06	0 inch to 9 inch diameter Stand off	0.00034 inch		
Receiver and position gauges, jigs and fixtures Service Reference: LD10	1200 mm × 1000 mm × 700 mm	(0.36 + L/866) μm, L in mm 0.70 μm (using substitution method) 0.40 μm (using reversal method)	Measurements made using a coordinate measuring machine. Uncertainty may be evaluated by numerical (Monte Carlo) methods.	

Assessment Manager: JG2 Page 38 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
ANGLE Service Reference: LD08				
Indexing tables	From 0° to 360°	0.040 seconds of arc		
Precision polygons	4 sides to 12 sides, excluding 7 and 11 sides	0.11 seconds of arc		
Combination angle gauges	0° to 45°	0.30 seconds of arc	As MOY/SCMI/18 and MOY/SCMI/45	
Autocollimators Visual and photoelectric	0 minutes of arc to 10 minutes of arc	0.060 seconds of arc		
FORM				
Roundness reference	5 mm to 100 mm diameter	0.0050 μm		
standards Reference Sphere Diameter Service Reference: LD07	10 mm to 50 mm diameter	0.11 μm		
Back vertex focal length or power of a lens. Service Reference: LR02	± 0.01 <i>D</i> to ± 25 <i>D</i>	0.0010 <i>D</i> to 0.010 <i>D D</i> : dioptre	Zygo interferometer and length measuring interferometer traceable to dimensional standards used to measure vertex of the back surface of a lens to the corresponding focus.	Teddington
Radius of curvature and sphericity of optical quality surfaces. Service Reference: LR02	4 mm to 1000 mm radius of curvature.	0.0020 mm, 26 nm for sphericity	Test items are calibrated for radius of curvature and departure from spherical form using a Zygo interferometer in conjunction with a commercial laser length measuring interferometer.	
Power of small angle prisms. Service Reference: LR02	0 to 20 prism dioptres (0° to 12° deviation).	0.010 prism dioptres.	Measurements of small angle prisms are carried out using the a Zygo interferometer, auxiliary mirrors, a clinometer and calibration test pieces when necessary.	
Optical flatness Service Reference: LR01	5 mm to 33 mm 33 mm to 100 mm 100 mm to 150 mm	14 nm 17 nm 20 nm	Flatness of optical quality surfaces using a Zygo interferometer housing a reference flat traceable to a liquid surface.	

Assessment Manager: JG2 Page 39 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
OTHER MEASURING INSTRUMENTS, EQUIPMENT AND MACHINES				
Laser frequency (Vacuum wavelength) Service Reference: LL03	Nominal wavelengths 500 nm to 2 μm	1 part in 10 ¹³		
Laser interferometer systems	0 m to 45 m			
Service Reference: LL01	Compensated	Q[0.08, 0.2 <i>L</i>] μm, <i>L</i> in m		
	Uncompensated	Q[0.08, 0.12 <i>L</i>] μm, <i>L</i> in m		
Extensometer calibration rigs Service Reference MF06	Displacements 0 mm to 300 mm	For the First two minutes 31 + (3.1 x R) nm For the second two minutes 51 + (3.1 x R) nm where R is the extension in mm	As BS EN ISO 9513:2012 and ASTM E83-23	Teddington
INFRA-RED				
Wavenumber, v for QA checks on mid-IR spectrophotometers Service Reference: 0T21	Nominal Values: 3060.0 cm ⁻¹ 2849.5 cm ⁻¹ 1942.9 cm ⁻¹ 1601.2 cm ⁻¹ 1583.0 cm ⁻¹ 1154.5 cm ⁻¹ 1028.3 cm ⁻¹ 906.60 cm ⁻¹	0.30 cm ⁻¹	Calibrated Artefact: Matt polystyrene film nominally 0.04 mm thick. Each film is individually calibrated at all eight selected transmittance minima. Films are measured in an FTIR spectrophotometer	

Assessment Manager: JG2 Page 40 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
PHOTOMETRY Luminous intensity (tungsten lamps) Service Reference: OT15 Illuminance (tungsten lamps and illuminance meters) Service Reference: OT15 Luminance (tungsten sources and luminance meters) Service Reference: OT16	1 cd to 100 cd 100 cd to 1000 cd 1000 cd to 10000 cd 0.1 lux to 500 lux 500 lux to 5000 lux 5000 lux to 20000 lux 20000 lux to 50000 lux (1 to 100) cd m ⁻² (100 to 1000) cd m ⁻² (1000 to 45000) cd m ⁻² (45000 to 45000) cd m ⁻²	0.70 % 0.60 % 0.70 % 0.90 % 0.80 % 0.90 % 1.0 % 1.3 % 1.2 % 1.3 % 1.4 %	The actual measurement uncertainty quoted on certificates depends critically on the lamp repeatability or the meter performance. The CMC relates to that which can be achieved using specially designed transfer standards and, in the case of sources, assumes that the correlated colour temperature or spectral power distribution is known. For illuminance/luminance meters, the calibration only applies for a tungsten source at a correlated colour temperature of 2856 K.	
Correlated colour temperature (tungsten lamps and colour temperature meters) Service Reference: OT15 Relative spectral power distribution and absolute spectral irradiance of tungsten and tungsten halogen sources Service Reference: OT17 Relative and absolute spectral radiance of tungsten and tungsten and tungsten spectral radiance of tungsten and tungsten halogen based sources Service Reference: OT17	250 nm to 300 nm 300 nm to 400 nm 400 nm to 800 nm 800 nm to 1600 nm 1600 nm to 2400 nm 2400 nm to 2500 nm	1.9% 1.8% 1.1% 1.0% 1.3% 2.0%	For lamps rated 50 W to 5000 W (nominal), correlated colour temperature in the range 2600 K to 3250 K. Includes the calculation of chromaticity coordinates and correlated colour temperature. Note Calibration measurement capability is based on measurement against "primary" level standards and is applicable to test lamps operating at approximately 2856 K and approximately 3100 K only. For lamps rated 50 W to 5000 W (nominal), correlated colour temperature in the range 2600 K to 3250 K.	Teddington

Assessment Manager: JG2 Page 41 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
RADIOMETRY Spectral responsivity of laser power meters Service Reference: OT25 Spectral responsivity Service Reference: OT24	100 pW to 1 mW 350 nm to 1600 nm 200 nm to 210 nm 211 nm to 239 nm 240 nm >240 nm to 315 nm 316 nm to 404 nm 405 nm to 919 nm 920 nm to 1000 nm 1001 nm to 1400 nm 1401 nm to 1800 nm	0.040 % 3.2% 1.0% 0.7% 0.5% 0.3% 0.1% 0.3% 0.3% 0.3% 0.3% to 0.4%*	At laser wavelength or peak wavelength of bandpass filter. *Where the uncertainty is stated as a range, linear interpolation may be used to find the measurement uncertainty at intermediate values, as per the CIPM-MRA-G-13 document, section 2.3 (Calibration and measurement capabilities in the context of the CIPM MRA),	Teddington

Assessment Manager: JG2 Page 42 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quant Instrument or Ga		Range		Expanded Uncertaint	Measurement y (k = 2)	Remarks	Location Code
COLORIMETRY AN REGULAR TRANSN Service Reference:	MITTANC		TRY -				
Regular transmittan	ce	0.001 t% to 100 T%		Absolute und	certainty for T%		
Wavelength range (nm)							
	Т%	200 to 209.9	210 to 349.9	350 to 800	800.1 to 1500	1500.1 to 2500	
	90	0.39	0.37	0.32	0.25	0.25	
	60	0.39	0.25	0.21	0.22	0.26	_ ₹

Т%	200 to 209.9	210 to 349.9	350 to 800	800.1 to 1500	1500.1 to 2500
90	0.39	0.37	0.32	0.25	0.25
60	0.39	0.25	0.21	0.22	0.26
30	0.19	0.17	0.10	0.14	0.26
10	0.18	0.08	0.08	0.10	0.18
3	0.05	0.05	0.05	0.10	0.10
1	0.030	0.030	0.030	0.100	0.100
0.3	0.030	0.030	0.030	0.090	0.090
0.1	0.030	0.030	0.030	0.030	0.030
0.01	0.003	0.003	0.003	0.003	0.003
0.001	0.0003	0.0003	0.0003	0.0003	0.0003

Note: The table is for measurements relative to air. For low transmittance samples measurements may be performed relative to a calibrated reference sample of higher transmittance (i.e. cascaded) and the uncertainty U(T%) is then given by $T\%\sqrt{\left(\frac{U(T\%_{\rm ref})}{T\%_{\rm ref}}\right)^2 + \left(\frac{U(T\%_{\rm casc})}{T\%_{\rm casc}}\right)^2}$ where $T\%_{\rm ref}$ and $U(T\%_{\rm ref})$ are the transmittance and associated uncertainty of the reference sample, $T\%_{\rm casc}$ is the transmittance reading with the reference filter in place and $U(T\%_{\rm casc})$ is the uncertainty associated with that transmittance reading (taken from the table above).

Assessment Manager: JG2 Page 43 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Instrument		Range			Expanded Measurement Uncertainty (k = 2)			Remarks	Location Code
COLORIMETRY REGULAR TRA Service Referer Optical density	NSMITTANCE	ROPHOTOMETRY - E (continued) 0 D to 5.0 D Wavelength range (nm):		Absolute u D	absori calcul transr		I density is equivalent to pance (A) and is sted from regular ittance using the formula \mathfrak{g}_{10} (100/%T).		
			Wave	elength range	e (nm)				
	Optical Density	200 to 209.9	210 to 349.9	350 to 800	800.1 to 1500		0.1 to		
	0.05	0.0019	0.0018	0.0015	0.0012	0.0	012		
	0.22	0.0028	0.0018	0.0015	0.0016	0.0	018		
	0.52	0.0027	0.0024	0.0014	0.0020	0.0	037		
	1.00	0.0075	0.0033	0.0034	0.0043	0.0	079		
	1.52	0.0080	0.0041	0.0037	0.0048	0.0	087		
	2.00	0.0107	0.0047	0.0048	0.0061	0.0	111		Te
	2.52	0.0110	0.0053	0.0050	0.0064	0.0	117		ddin
	3.00	0.0131	0.0057	0.0058	0.0075	0.0	136		Teddington
	4.00	0.0151	0.0066	0.0067	0.0086	0.0	157		5
	5.00	0.0169	0.0074	0.0075	0.0097	0.0	176		
measurement an	d associated un		·	easurements t	the uncertainty is	derived f	from the	transmittance	

Wavelength of absorption peaks	200 to 3000 nm	0.15 nm	
Colour data: CIELAB L* a* b*	0 to 100 -200 to +200 -200 to +200	0.050 0.050 0.050	Colour data are normally given for the CIE 2° and 10° Standard observers and CIE Standard Illuminants A, C and D65. Data for other Standard Illuminants can be provided on request.
Colour data: CIE x, y, u', v'	0 to 1	0.0002	
Luminous transmittance Y	0 %Y to 100 %Y	0.15 % for 60 %Y	

Assessment Manager: JG2 Page 44 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
COLORIMETRY AND SPECTR REFLECTANCE Service Reference: OT20 Spectral diffuse reflectance; specular included and specular excluded geometries (see Note 1) 0°:45°a Spectral radiance factor (see Notes 1 and 2)	Absolute uncertainty: $0 \%R \text{ to } 100 \%R$ $Wavelength \ range \ (nm):$ $350 < \lambda \le 380$ $380 \le \lambda \le 460$ $460 < \lambda \le 800$ $800 < \lambda \le 2000$ $2000 < \lambda \le 2500$ Absolute uncertainty: $0\% \text{ to } 102\%R$ $Wavelength \ range \ (nm):$ $350 \le \lambda \le 380$ $380 < \lambda \le 800$ $800 < \lambda \le 2000$ $2000 < \lambda \le 2500$	2.5 % (white), 0.25 % (black) (0.050 + 0.0055R) % (0.050 + 0.0035R) % 1.6 % (white), 0.35 % (black) 2.1 % (white), 0.65 % (black) 2.5 % (white), 0.25 % (black) (0.050 + 0.0070R) % 2.3 % (white), 0.30 % (black) 2.8 % (white), 0.70 % (black)	Note 1: The CMCs are for measurement against similar NPL reference standards, and examples are given covering the range from 'white' samples to 'black' samples. Higher uncertainties may apply where no similar NPL reference standard is available. Note 2: Radiance factor results are expressed relative to the perfect reflecting (Lambertian) diffuser. A result >100 % implies that the sample reflects more radiation at 45° than a Lambertian diffuser.	Teddington
Colour data: CIELAB L* a* b* (See Note 3) Colour data: CIE x, y, u', v' (See Note 3)	0 to 100 -200 to +200 -200 to +200	0.15 0.10 0.10 0.0002	Note 3: Colour data are normally given for the CIE 2° and 10° Standard observers and CIE Standard Illuminants A, C and D65. Data for other Standard Illuminants can be provided on request.	
Luminous reflectance Y (See Note 3)	0 %Y to 100 %Y	0.55 % (white), 0.10 % (black)		

Assessment Manager: JG2 Page 45 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
TEMPERATURE				
Standard resistance thermometers, fixed point calibrations Service Reference: PM02	-196 °C to +0.01 °C -189.3442 °C -38.8344 °C 0.01 °C 0 °C to 29.7646 °C 0 °C to 156.5985 °C 231.928 °C 419.527 °C 0 °C to 419.527 °C 419.527 °C to 660.323 °C 0 °C to 419.527 °C 419.527 °C to 660.323 °C 660.323 °C to 961.78 °C	0.0017 °C to 0.00016 °C 0.00050 °C 0.00035 °C 0.00011 °C 0.00016 °C to 0.00030 °C 0.00030 °C to 0.00070 °C 0.00070 °C 0.00090 °C 0.0010 °C 0.0010 °C 0.0020 °C 0.0020 °C 0.0020 °C 0.0020 °C 0.0020 °C 0.0040 °C	Comparison at LN ₂ . Calibrations at measurement current. For HTSPRTs	
Resistance thermometers, calibration by comparison Service Reference: PM04	-196 °C -100 °C to -80 °C -80 °C to 0 °C 0 °C to 30 °C 30 °C to 100 °C	0.0050 °C 0.010 °C 0.0060 °C 0.0030 °C 0.0050 °C	Comparison at LN₂ and in acetone. Oil and water baths.	
Resistance thermometers, by dry block calibration Service Reference: PM04	50 °C to 150 °C 150 °C to 420 °C	0.040 °C 0.040 °C to 0.10 °C		Teddington
Temperature indicators with resistance sensor Service Reference: PM04	-196 °C to +420 °C	As for sensor		gton
Fixed Point Cells Service Reference: PK01				
Triple point of Argon	-189.3442 °C	0.00050 °C	Cell compared with NPL	
Triple point of Mercury	-38.8344 °C	0.00020 °C	reference cell during several realisations of the fixed point	
Melting point of Gallium	29.7646 °C	0.00020 °C	temperature using Standard Platinum Resistance	
Freezing point of Indium	156.5985 °C	0.00070 °C	Thermometers	
Freezing point of Tin	231.928 °C	0.00060 °C		
Freezing point of Zinc	419.527 °C	0.00090 °C		
Freezing point of Aluminium	660.323 °C	0.0025 °C		
Freezing point of Silver	961.78 °C	0.0040 °C		

Assessment Manager: JG2 Page 46 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
Fixed Point Cells (continued) Service Reference: PK01				
Water triple point cells	0.01 °C	0.000070 °C 0.000058 °C	By comparison with 2 cells from NPL reference batch By comparison with 5 cells from NPL reference batch	
Thermocouples Service Reference: PM03				
Noble metal type Pt-Rh	420 °C 962 °C, 1085 °C 1324 °C 1492 °C 0 °C to 1100 °C 1100 °C to 1330 °C 1330 °C to 1500 °C 1064.18 °C 1554.8 °C 0 °C to 1100 °C with 1100 °C to 1600 °C	0.13 °C 0.21 °C 0.53 °C 0.72 °C 0.30 °C to 0.55 °C 0.55 °C to 0.72 °C 0.57 °C 0.85 °C 1.0 °C 1.0 °C to 1.5 °C	ITS-90 fixed points Secondary fixed point Co-C Secondary fixed point Pd-C derived from ITS-90 Polynomial interpolation with improved homogeneity Wire Bridge Method Au Pd Interpolation based upon Au and Pd wire bridge measurements	
Pt-Rh (type B only)	1768.2 °C 400 °C to 1100 °C 1100 °C to 1800 °C	1.1 °C 0.30 °C 0.30 °C to 1.2 °C	Wire bridge method Pt Based upon Zn and Ag fixed points and Pt wire bridge	
Thermocouples noble metal type Pt-Pd				
	420 °C 962 °C, 1085 °C 1324 °C 1492 °C 0 °C to 1100 °C 1100 °C to 1330 °C	0.10 °C 0.070 °C 0.53 °C 0.72 °C 0.20 °C 0.20 °C to 0.55 °C	ITS-90 fixed points Secondary fixed point Co-C Secondary fixed point Pd-C derived from ITS-90 Interpolation	
	1100 °C to 1500 °C	0.20 °C to 0.72 °C		

Assessment Manager: JG2 Page 47 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
TEMPERATURE (continued)				
Thermocouples, Noble metal type Au-Pt	420 °C, 660 °C, 962 °C	0.050 °C		
metal type Au-i t	0 °C to 1000 °C	0.050 °C	Where Zn and Ag fixed points used.	
Thermocouples, base metal types	-196 °C -80 °C to 0 °C 0 °C to 50 °C 50 °C to 100 °C	0.50 °C 0.10 °C 0.050 °C 0.10 °C	Comparison with LN ₂ and in oil and water baths	
Thermocouples, by dry block calibration	50 °C to 700 °C	0.75 °C	Calibration via comparison to the integrated reference PRT of a dry block calibrator	
Temperature indicators with thermocouple sensor Service Reference: PM04	-196 °C to +100 °C	As for sensor	·	
Compensating and extension cables Service Reference: PM03	-25 °C to +100 °C	As for base metals thermocouples	By comparison.	Te
Thermocouple fixed point cells Service Reference: PK01				Teddington
Cu fixed point cell (freeze)	1084 °C	0.031 °C	Certification of fixed point cells by measurement (with Pt/Pd	on
Co-C fixed point cell (melt) Pd-C fixed point cell (melt)	1324 °C 1492 °C	0.44 °C 0.65 °C	thermocouples) against NPL National Standard fixed point cells	
Disappearing filament pyrometers Service Reference: PM06	700 °C to 800 °C 800 °C to 1700 °C 1700 °C to 2800 °C	5.0 °C to 2.0 °C 2.0 °C 2.0 °C to 8.0 °C		
Infrared Thermometers Service Reference: PM06	-40 °C to +50 °C 15 °C to 45 °C 50 °C to 260 °C 260 °C to 600 °C 600 °C to 1000 °C	0.10 °C 0.050 °C 0.10 °C 0.20 °C 0.30 °C	Including tympanic thermometers	
	1000 °C to 3000 °C	0.050 % of Celsius temperature	For temperatures above 1324 °C Eutectic Fixed Point can be used	
Blackbody Sources Service Reference: PM06	-40 °C to +260 °C 260 °C to 600 °C 600 °C to 1000 °C 962 °C, 1064 °C, 1085 °C 1000 °C to 3000 °C	0.20 °C 0.24 °C 0.30 °C 0.060 °C 0.050 % of Celsius temperature		

Assessment Manager: JG2 Page 48 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
HUMIDITY			Instruments with an electrical output can also be calibrated. The accreditation covers other humidity units directly related to dew-point, e.g. vapour pressure, parts per million weight or volume, g/kg etc.	
Dew-point Service Reference: MH01	+90 °C to +95 °C +90 °C to +75 °C +75 °C to +60 °C +60 °C to -60 °C -60 °C to -75 °C -75 °C to -90 °C -90 °C to -100 °C	0.10 °C to 0.12 °C 0.10 °C to 0.050 °C 0.050 °C to 0.033 °C 0.033 °C 0.033 °C to 0.10 °C 0.10 °C to 0.50 °C 0.50 °C to 1.60 °C		Те
Dew point in air and nitrogen at elevated pressure Service Reference: MH07	-60 °C to +10 °C	0.070 °C	At pressures up to 1 MPa.	Teddington
Dew point in various gases at elevated pressure Service Reference: MH07	-60 °C to +15 °C 1 μmol/mol to 100 μmol/mol	0.12 °C 0.04 μmol/mol to 1.25 μmol/mol	At pressures up to 3 MPa in air, inert gases, methane and premade cylinder gas blends.	
Relative Humidity Service Reference: MH02/MH03	0.5 %rh to 98 %rh at temperatures from -40 °C to +100 °C	0.60 % of reading + 0.10 %rh		
Temperature Sensors incorporated in humidity instruments Service Reference: MH02/MH03	-40 °C to -20 °C -20 °C to +50 °C 50 °C to 100 °C	0.080 °C 0.040 °C 0.080 °C		

Assessment Manager: JG2 Page 49 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
NEUTRON DOSIMETRY NEUTRON SOURCE EMISSI Service Reference: RN05	ON RATE			
Emission rate from radionuclide neutron sources	Source emission rate (10 ⁵ to 2 x 10 ⁹) s ⁻¹	1.0 % to 1.2 % depending on source	Induced ⁵⁶ Mn activity measured using sodium iodide detectors.	
	Source emission rate (10 ² to 2 x 10 ⁶) s ⁻¹	1.2 % to 1.5 % depending on source	Relative measurement performed using a moderating detector assembly.	Tedd
Anisotropy of emission from radionuclide neutron sources	Source emission rate (10 ⁵ to 10 ⁸) s ⁻¹ Anisotropy factor 0.5 to 1.2	0.50 % to 1.0 % depending on source	Measurements performed using a precision long counter in a low-scatter environment.	Teddington
NEUTRON FLUENCE				
Thermal neutron fluence Service Reference: RN01	Energy: thermal Neutron beam Fluence rates: (10 ³ to 4 x 10 ⁴) cm ⁻² s ⁻¹	1.2 % for Wescott fluence 4.0 % for 'true' fluence	Fast neutrons moderated in a graphite pile. Beam of thermal neutrons extracted. Fluence standard - gold foil activation Service conforms to ISO 8529 Parts 1 to 3.	

Assessment Manager: JG2 Page 50 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
NEUTRON FLUENCE (contin	ued)			
Thermal neutron fluence Service Reference: RN01	Energy: thermal Isotropic field Fluence rates: (10 ⁴ to 3 x 10 ⁷) cm ⁻² .s ⁻¹	1.0 % for Westcott fluence	Fast neutrons moderated in graphite pile. Isotropic thermal neutron fields in a small 150 cm³ cavity. Fluence standard - gold foil activation.	
Fast neutron fluence Service Reference: RN02	Energy: 70 keV to 17 MeV Accelerator based Monoenergetic fields Fluence rates: (1 to 1500) cm ⁻² .s ⁻¹ at 1 m from target	4.0 %	Neutrons are produced using beams of protons or deuterons from a 3.5 MV Van de Graaff accelerator. Fluences measured using precision long counter. Service conforms to ISO 8529 Parts 1 to 3.	
Fast neutron fluence Service Reference: RN04	Energy: broad range Sources: ²⁴¹ Am-Be, ²⁵² Cf, ²⁴¹ Am-B, ²⁴¹ Am-Li, ²⁴¹ Am-F Fluence rates: (1 to 400) cm ⁻² .s ⁻¹	1.3 %	Fields are produced using radionuclide neutron sources of known emission rate and anisotropy. Actual fluence rate depends on particular source Service conforms to	_
NEUTDON DOGE FOUNDALE	at 1 m from source		ISO 8529 Parts 1 to 3.	Teddington
NEUTRON DOSE EQUIVALE				ngto
Thermal neutron dose equivalents Service Reference: RN01,	Energy: thermal Neutron beam Dose equivalent rates: 40 µSv h ⁻¹ to 2.0 mSv h ⁻¹	5.0 %	Fluences are converted to ambient dose equivalent or personal dose equivalent using accepted conversion coefficients from ICRU 57 or	3
Fast neutron dose equivalents Service Reference: RN02	Energy: 70 keV to 17 MeV Accelerator based monoenergetic fields Dose equivalent rates: 0.2 µSv h ⁻¹ to 2.0 mSv h ⁻¹	4.0 %	ICRU 95. For broad energy range neutron fields from sources the uncertainties in the neutron dose equivalent values reflect uncertainties in the source spectra rather than the	
Fast neutron dose equivalents Service Reference: RN04	Energy: broad range Radionuclide sources Dose equivalent rates:		conversion coefficients, which are assumed to be exact. Service conforms to: ISO 8529 Parts 1 to 3.	
	²⁴¹ Am-Be: (1 to 400) μSv.h ⁻¹ at 1m from the source	8.1 %		
	252Cf: 2 μSv.h ⁻¹ to 3 mSv.h ⁻¹		Actual dose equivalent rate depends on particular source.	
	at 1m from the source	2.4 %		

Assessment Manager: JG2 Page 51 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
NEUTRON DOSE EQUIVALE	NT (continued)			
Fast neutron dose equivalents Service Reference: RN04	241Am-B: 5 μSv h ⁻¹ 1m from the source	8.5%		
	241Am-F: 1.6 μSv h ⁻¹ 1m from the source	9.0%		
	241Am-Li: 1.8 μSv h ⁻¹ 1m from the source	9.0%		Ted
Protection level dosemeters Air kerma rate				Teddington
X-rays Service Reference: RD02	ISO 4037 narrow spectrum (generating potential 8 keV to 250 keV) 350 μGy h ⁻¹ to 100 mGyh ⁻¹	1.6 %	Calibration of protection level ionisation chamber with volumes ranging from 35 cm³ to 10 litres connected to a suitable secondary standard electrometer.	on
γ-radiation Service Reference: RD02	⁶⁰ Co 1 μGyh ⁻¹ to 0.1 Gyh ⁻¹ ¹³⁷ Cs 1 μGyh ⁻¹ to 0.6 Gyh ⁻¹	1.7 % 1.7 %		
	²⁴¹ Am 8 μGyh ⁻¹ to 0.3 mGyh ⁻¹	1.7 %		

Assessment Manager: JG2 Page 52 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
Therapy level dosemeters Service Reference RD01				
Measurement of air kerma rate	Half value layers 0.024 mm Al to 20 mm Al (generating potential 8 kVp to 50 kVp)	1.3%	Calibration of NE2561, NE2611 and Farmer type and soft x-ray ionisation chambers	
X-rays Service Reference RD01	Half value layers 0.024 mm Al to 20 mm Al (generating potential 50 kVp to 280 kVp)	1.4 %	Calibration of NE2561, NE2611 and Farmer type and soft x-ray ionisation chambers.	
γ-radiation Service Reference RD01	⁶⁰ Co	0.70 %	Calibration of NE2561, NE2611 and Farmer type and soft x-ray ionisation chambers.	
Measurement of absorbed dose to water				
γ-radiation Service Reference RD01	⁶⁰ Co	1.3 %	Calibration of NE2561, NE2611, for Farmer type ionisation with a suitable secondary standard electrometer, if supplied.	
Photons Service Reference RD01	TPR ₁₀ ²⁰ : 0.568 to 0.800 Nominal beam energy ⁶⁰ Co, 4 MV to 25 MV	1.3 %	енесполнетег, ії ѕиррінец.	Teddington
Electrometer Charge Display, Charge Input Service Reference RD16	Min 10 pC to max 1 μC Depending on electrometer model	0.10 % to 0.90 % Depending on electrometer model and input charge	Calibration of suitable secondary standard electrometer.	yton
Electrometer Charge & Current Display, Current Input Service Reference RD16	min 5 pA to max 2 μA Depending on electrometer model	0.10 % to 0.90 % depending on electrometer model and input current	Calibration of suitable secondary standard electrometer	
High dose dosimetry				
Absorbed dose to water Service Reference RD07	⁶⁰ Co Dose: >2 Gy	2.2 %	High dose irradiation service.	
Service Reference RD05	⁶⁰ Co Dose: 2 kGy to 55 kGy	2.2 % to 2.9 % depending on the dose	Dichromate dosimetry service.	
Service Reference RD06	60Co, ¹³⁷ Cs, photons generated above 2 MeV and electrons generated above 4 MeV. Dose: 20 Gy to 100 kGy	2.6 %	Alanine dosimetry service	

Assessment Manager: JG2 Page 53 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

				1
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
RADIOACTIVITY METROLOGY				
RR20 – Standards of Radioactivity (activity per unit mass, Bq g¹¹): Solutions and spiked substrates of α -particle, β -particle, X-ray and γ -ray emitting radionuclides measured by secondary techniques. Service Reference: RR20-ICGS	4 kBq g ⁻¹ to 15 GBq g ⁻¹ , depending on radionuclide	0.30 %	Procedures directly supporting this work are: RMS005 – Standards of Radioactivity Solutions RMT006 - Measurement of a Gamma Spectrometry Sample RMT007 - Analysis of a Gamma Spectrometry Sample RMT031 - Activity Assay Using Ionisation Chambers Results for gamma emitters may be certificated as gammas s ⁻¹ g ⁻¹ by multiplication of the measured activity per unit mass by published emission probabilities.	
RR20 - Standards of Radioactivity (activity per unit mass, Bq g¹): Solutions of α-particle, β-particle and X-ray emitting radionuclides measured by secondary liquid scintillation techniques Service Reference: RR20-LSC	10 Bq g ⁻¹ to 500 kBq g ⁻¹	0.20 %	Procedures directly supporting this work are: RMS005 - Standards of Radioactivity Solutions RMT009 - Secondary Standardisation of Radionuclides using CIEMAT/NIST Technique RMT010 - Standardisation of Radionuclides by Alpha LSC RMT012 - Dilution check by liquid scintillation counting RMT054 - Secondary standardisation of beta-emitting radionuclides by the TDCR technique	Teddington
RR20- Standards of Radioactivity (activity per unit mass, Bq g^1 or γ emission rate per unit mass, s^1g^1): Solutions of Environmental level standards of radioactivity Service Reference: RR20-BATCH	0.001 Bq g ⁻¹ to 100 kBq g ⁻¹ , 0.01 s ⁻¹ g ⁻¹ to 1000 s ⁻¹ g ⁻¹ depending on radionuclide	0.30 %	Procedures directly supporting this work are: RMS005 – Standards of radioactivity Solutions RMS007 - Production of the NPL Mixed Radionuclide Solution RMT012 - Dilution check by liquid scintillation counting	

Assessment Manager: JG2 Page 54 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
RADIOACTIVITY METROLOGY (continued) RR20- Solid substrates (air filters) directly spiked with solutions produced by the above techniques (activity, Bq or or emission rate, s-1) Service Reference RR20-SPIKE	10 Bq to 500 kBq, 0.01 s ⁻¹ to 1000 s ⁻¹ depending on radionuclide	0.60 %	Procedures directly supporting this work are: RSP013 – Preparation of radioactive sources RMS018 – Preparation of radioactive air filters RMT006 - Measurement of a Gamma Spectrometry Sample RMT007 - Analysis of a Gamma Spectrometry Sample	
RR/0203 - Instrument Calibration (response to activity concentration, Bq m³): Customer supplied radioactivity-in-air monitors (other than radon) Service Reference RR02	40 kBq m³ to 30 GBq m³	4.0 %	Procedures directly supporting this work are: RMT003 - Calibration of Tritium-In-Air Monitors	Teddington
RR/0301 – Wide Area Reference Source Calibration (surface particle emission rate, particles s ⁻¹): Customer supplied radioactive surface contamination sources Service Reference RR03	10 particles s ⁻¹ to 10000 particles s ⁻¹	For Alpha emitters: 0.42 % For Beta emitters with β _{max} : > 500 keV: 0.58 % 100 keV to 500 keV: 0.78 %	Procedures directly supporting this work are: RMS008 - RR0300 Calibration Service RMT004 - Measurement of a Wide Area Reference Source by the Primary Large Area Proportional Counter RQC004 - Quality Checks of the Large Area Proportional Counter RSP008 - Setting of the Alpha and Beta Counting Thresholds	

Assessment Manager: JG2 Page 55 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
RADIOACTIVITY METROLOGY (continued) RR/0701 - Artefact calibration (activity content, Bq or Activity per unit mass, Bq g ⁻¹):): Gelatine capsules (¹³¹ I only), brachytherapy wires (¹⁹² Ir only), brachytherapy seeds (¹²⁵ I only) or solutions of β-particle, X-ray and γ-ray emitting radionuclides measured by secondary techniques. Service Reference: RR07	400 Bq to 15 GBq, 400 Bq g ⁻¹ to 15 GBq g ⁻¹ , depending on radionuclide	0.32%	Procedures directly supporting this work are: RMT031 - Activity Assay using lonisation Chambers RMS001 - Calibration of Customer Supplied Sources (Gamma Emitters) RMS002 - Calibration of Customer Supplied Sources (Beta Emitters) RMT006 - Measurement of a Gamma Spectrometry Sample RMT007 - Analysis of a Gamma Spectrometry Sample	Teddington

Assessment Manager: JG2 Page 56 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
MASS Service Reference: MM01 Specific values	Nominal value (g) 50 000 20 000 10 000 5 000 3 000 2 000 1 000 500 300 200 100 50 30 20 100 5 3 2 1 to 0.001 0.0005 to 0.00005	(mg) 3.0 1.3 0.57 0.28 0.16 0.10 0.046 0.024 0.015 0.010 0.0060 0.0035 0.0025 0.0020 0.0015 0.00000 0.00000 0.000000 0.000000 0.000040 0.000040	The stated uncertainties relate to measurements made on standards that are constructed in accordance with the principles contained in OIML Recommendation III for weights of Class E1. Intermediate values of weights can be calibrated to an uncertainty equal to the greater of the uncertainties associated with the next higher and lower nominal values in the table.	Teddington
DENSITY Service Reference: MM03 Density of solid materials	Artefacts, 1000 kg/m³ to 9000 kg/m³ 1 g to 100 g 100 g to 1 kg 1 kg to 20 kg Artefacts >9000 kg/m³ 1 g to 100 g 100 g to 1 kg 1 kg to 20 kg	(4.0 to 0.50) kg/m³ (0.50 to 0.25) kg/m³ (3.0 to 1.0) kg/m³ (4.0 to 1.0) kg/m³ 1.0 kg/m³ (5.0 to 2.0) kg/m³	Using the following apparatus: 100 g hydrostatic weighing apparatus 1 kg hydrostatic weighing apparatus 20 kg hydrostatic weighing apparatus	
VOLUME Service Reference: MM03				
Volume of solid materials	0.1 cm ³ to 2500 cm ³	0.00006 cm ³ to 0.25 cm ³	Artefact density > 1000 kg/m ³	

Assessment Manager: JG2 Page 57 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
NPL Primary Reference Mater Preparation of synthetic gas m NPL CALIBRATED GAS MIXT Certification of synthetic gas m The laboratory also has ISO 1 Accredited certified reference https://www.ukas.com/downlorgas mixtures can be produced	ials (NPL PRMs) ials (NPL PRMs) intures by gravimetry in accordate TURES (NPL CGMs) inixtures by analysis. 7034:2016 accreditation for proceeding producer number 4002 ad-schedule/4002/ReferenceMaterial produced as listed belo		n by analysis. aterials (NPL PRMs).	
Nitrogen Carbon dioxide Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Hexane Helium Oxygen Benzene Toluene Cyclohexane Methylcyclohexane n-Heptane n-Octane n-Nonane n-Decane	0.02 to 25.2 0.04 to 25.0 55.0 to 99.9 0.008 to 18 0.008 to 8.0 0.004 to 1.7 0.004 to 1.7 0.0005 to 0.5 0.0025 to 0.6 0.0025 to 0.6 0.0025 to 0.6 0.0008 to 0.5 0.001 to 0.5 0.05 to 1.0 Amount fraction μmol/mol 5 to 500 5 to 250 10 to 400 10 to 400 10 to 500 5 to 10 10 to 200 1 to 10 10 to 120 1 to 20	0.18 % relative + 0.00038 0.20 % relative + 0.00045 0.018 % relative + 0.000080 0.30 % relative + 0.000080 0.40 % relative + 0.000040 0.40 % relative + 0.000040 0.80 % relative + 0.000015 0.40 % relative + 0.000030 0.40 % relative + 0.000030 0.40 % relative + 0.000030 1.0% relative + 0.000050 1.0% relative + 0.000050 1.0% relative Amount fraction μmol/mol 1.1 % relative + 0.030 1.2 % relative + 0.040 1.6 % relative + 0.048 1.6 % relative + 0.048	NPL PRMs and NPL CGMs	Teddington

Assessment Manager: JG2 Page 58 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
(continued) SYNTHETIC FUEL GAS MIXTURES Nitrogen Carbon monoxide Carbon dioxide Oxygen Hydrogen Helium Methane Ethane Ethene Ethyne Propane Propene i-Butane n-Butane 1-Butene i-Butene t-2-Butene	Amount fraction %mol/mol 0.1 to 95 0.1 to 11 0.3 to 8 0.2 to 2.5 1 to 70 1 to 85 0.3 to 35 0.1 to 20 0.025 to 2 0.1 to 18 0.04 to 10 0.1 to 4 0.1 to 6 0.015 to 1.55 0.018 to 1.2 0.015 to 0.85	Amount fraction %mol/mol 0.30 % relative + 0.0020 0.48 % relative + 0.0016 0.48 % relative + 0.0016 0.48 % relative + 0.0016 0.78 % relative + 0.0025 0.40 % relative + 0.0025 0.33 % relative + 0.0015 0.35 % relative + 0.0010 0.35 % relative + 0.0010 0.35 % relative + 0.00030 0.40 % relative + 0.00025 0.40 % relative + 0.00025 0.40 % relative + 0.00020 0.45 % relative + 0.00020 0.50 % relative + 0.00020 0.50 % relative + 0.00020 0.45 % relative + 0.00020 0.45 % relative + 0.00013	S (NPL CGMs) NPL PRMs and NPL CGMs	
c-2-Butene 1,3-Butadiene i-Pentane n-Pentane SULPHUR ODORANT GAS MIXTURES Hydrogen sulphide Carbonyl sulphide	0.015 to 0.35 0.01 to 3 0.05 to 0.8 0.05 to 0.8 Amount fraction μmol/mol 0.4 to 5,000 0.4 to 5,000	0.45 % relative + 0.00013 0.55 % relative + 0.00015 0.45 % relative + 0.00020 0.45 % relative + 0.00020 Amount fraction µmol/mol NPL PRM 1.0 % relative + 0.0050	Matrix gas: Methane or nitrogen	Teddington
Carbon disulphide Dimethyl sulphide Ethyl methyl sulphide Diethyl sulphide Diethyl sulphide Methyl mercaptan [Methanethiol] Ethyl mercaptan [Ethanethiol] i-propyl mercaptan [2-propanethiol] n-propyl mercaptan [1-propanethiol] Tert-butyl mercaptan [2-methyl-2-propanethiol]	0.4 to 200 0.4 to 200	(All components) NPL CGM 1.2 % relative + 0.0050 (All components)		
Tetrahydrothiophene [THT]	0.4 to 200			

Assessment Manager: JG2 Page 59 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
NPL PRIMARY REFERENCE (continued) OZONE PHOTOMETERS	MATERIALS (NPL PRMs) AND	NPL CALIBRATED GAS MIXTURE	S (NPL CGMs)	
Service Reference: QE85- 0000 Ozone in synthetic Air	(0 to 0.1) x 10 ⁻⁶ mol/mol (0.1 to 1) x 10 ⁻⁶ mol/mol (1 to 10) x 10 ⁻⁶ mol/mol (10 to 50) x 10 ⁻⁶ mol/mol	3.0 nmol/mol 3.0 % 3.2% 3.5%	Calibrated using ozone standard reference photometer and for ozone amount fractions in excess of 1 part per million, an external ozone generator according to NPL in-house procedure QPDQM/B/516.	Teddington

Assessment Manager: JG2 Page 60 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
ULTRASONICS				
Service Reference: AW07				
End-of-cable loaded sensitivity of a hydrophone	1 MHz to 8 MHz 9 MHz to 12 MHz 13 MHz to 16 MHz 17 MHz to 20 MHz 21 MHz to 30 MHz 31 MHz to 40 MHz	6.0 % 7.0 % 8.0 % 11 % 12 % 15 %	Free field sensitivity determined through substitution using a secondary hydrophone in a non-linearly distorted sound field	
End-of-cable loaded sensitivity of a hydrophone in fine frequency range	0.5MHz to <1MHz 1 MHz to 8 MHz 9 MHz to 12 MHz 13 MHz to 16 MHz 17 MHz to 20 MHz	9.0% 8.0 % 9.0 % 10 % 11 %	Free field sensitivity determined through substitution using a secondary hydrophone in a quasi-linear tone-burst acoustic field. Lowest frequency resolution is 10 kHz.	
UNDERWATER ACOUSTICS	 			Tec
Calibration of hydrophones and projectors Service Reference: AW10			According to IEC 60565:2006	Teddington
End of cable hydrophone receive sensitivity	25 Hz to 400 Hz	0.50 dB	By comparison to a microphone using an air-pistonphone	
Free field sensitivity of reference measuring hydrophones/projectors	250 Hz to <300 Hz 300 Hz to <350 Hz 350 Hz to <450 Hz 450 Hz to <650 Hz 650 Hz to 500 kHz	1.10 dB 0.90 dB 0.70 dB 0.60 dB 0.50 dB	Using three-transducer spherical wave reciprocity method in a laboratory tank	
Free field sensitivity of reference measuring hydrophones	1 kHz to 2 kHz 2 kHz to 1 MHz	0.90 dB 0.70 dB	By comparison with NPL reference hydrophone in a laboratory tank	
Directional response of transducers and hydrophones	1 kHz to 1 MHz	0.21 dB	Normalised response versus angle. XY, XZ and YZ responses available. Performed in a laboratory tank	

Assessment Manager: JG2 Page 61 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
UNDERWATER ACOUSTICS (continued) Calibration of hydrophones and projectors Service Reference: AW15			According to IEC 60565:2006	
Projector sensitivity	250 Hz to 500 Hz 500 Hz to 1kHz 1 kHz to 350 kHz	1.2 dB 1.0 dB 0.9 dB	Using calibrated hydrophone method in an open-water test facility	Wraysbury
Hydrophone sensitivity	250 Hz to 500 Hz 500 Hz to 1 kHz 1 kHz to 350 kHz	1.2 dB 1.0 dB 0.9 dB	Using calibrated projector method in an open-water test facility	bury
Complex admittance conductance susceptance capacitance	250 Hz to 350 kHz	2.0 % + 10 μS 2.0 % + 10 μS 2.0 % + 20 μS	For underwater electro acoustic transducers only. Undertaken in open-water test facility.	
FORCE				
Proving devices, load cells and other force-measuring devices in compression and tension modes increasing and decreasing forces Service Reference: MF01	10 kN to 1.2 MN 1.2 MN to 5 MN	0.0010 % 0.05%	Calibrations can be performed in accordance with, ASTM E74-18, ISO 376:2011, NPL Management Documented In-House Method' QPMAM/M/B/070, BS 8422:2003 standard and	Teddingtor
Proving devices, load cells and other force-measuring devices in compression mode increasing forces only Service Reference: MF01	5 MN to 12 MN 12 MN to 30 MN	0.05 % 0.15 %	supplementary calibrations A, B, E, L and R.	on

Assessment Manager: JG2 Page 62 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
FORCE (continued) Strain Gauged Column Service Reference: MF03	200 kN to 2 MN Linear dimensions 80 mm to 120 mm 180 mm to 220 mm Flatness 0.00 mm to 1 mm Parallelism 0.00 mm to 1 mm	0.014 mm 0.021 mm 0.0034 mm 0.0034 mm	Calibration of Strain Gauged Columns in accordance with BS EN 12390-4:2019 Annexes A2 and A3. Measurement of Strain ratio, Height, Diameter, Flatness and Parallelism	
Calibration of DC voltage ratio meters used with strain gauge force transducers Service Reference: MF04	0.01 mV/V to 0.05 mV/V 0.05 mV/V to 1.0 mV/V 1.0 mV/V to 2.5 mV/V 2.5 mV/V to 10 mV/V	0.010 % 0.0050 % 0.0070 % 0.0050 %	Ratio meters are compared to a reference resistance network using a precision digital voltmeter to measure the voltage ratios generated.	
PRESSURE Service Reference: MP03 Gas Pressure (absolute) Determination of effective area of deadweight testers Calibration of pressure indicating instruments Gas Pressure (gauge) Determination of effective area of deadweight testers Service reference: MP04 Oil Pressure (gauge) Determination of effective area of deadweight testers	3.5 kPa to 16 kPa 16 kPa to 700 kPa 700 kPa to 7 MPa 80 kPa to 110 kPa 3.5 kPa to 7 MPa 3.5 kPa to 16 kPa 16 kPa to 700 kPa 700 kPa to 7 MPa 7 MPa to 21 MPa	0.0017 % 0.0015 % Q[$p \times 0.0019\%$, $p^2 \times 2.5 \times 10^{-13}$] 5.0 Pa 0.0015 % 0.0017 % 0.0015 % Q[$p \times 0.0025\%$, $p^2 \times 2.5 \times 10^{-13}$] Q[$p \times 0.0028\%$, $p^2 \times 1.1 \times 10^{-12}$]	Calibration against pressure balance standards	Teddington

Assessment Manager: JG2 Page 63 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
FIBRE OPTICS			Measurements carried out at 23 °C ± 2 °C, unless stated otherwise	
Mode field diameter Service Reference: OT06-1020	3.5 μm to 13 μm 0 % to 1 %	0.60 % 0.10 %	Single-mode fibre from 1250 nm to 1625 nm. Far field scan method Petermann II definition	
Mode field noncircularly Service Reference: OT06-1020				
Effective area Service Reference: OT06-1050	30 μm² to 130 μm²	2.0 %	Far field scan method. Hankel transform	
Dispersion in single-mode optical fibre Service Reference: OT06-1010			Fibre length: 2 km to 50 km	
Dispersion	0 ps.nm ⁻¹ to 1.3 x 10 ⁻⁵ ps.nm ⁻¹	1.5 % added in quadrature with 0.010 ps.nm ⁻¹ .km ⁻¹	Laser based system	
Zero dispersion wavelength	1250 nm to 1650 nm	0.10 nm	Laser based system	Ted
Dispersion slope at zero dispersion wavelength	-100 to +100 ps.nm ⁻¹ .km ⁻¹	1.5 %	Laser based systems	Teddington
Optical length Service Reference: OT06-1110	0.1 km to 15 km measured in the wavelength range 1270 nm to 1650 nm.	(0.040 + 1.7 x 10 ⁻⁵ <i>L</i>)	Single-mode optical fibre, pulsed time of flight technique.	ם
	15 km to 105 km measured at wavelengths of 1310 nm, 1550 nm and 1625 nm	(0.10 + 1.7 x 10 ⁻⁵ <i>L</i>)	L is optical length in metres	
Fibre attenuation coefficient uniformity Service Reference: OT06-1100	0.17 dB/km to 0.43 dB/km	0.0060 dB/km	Single-mode optical fibre (length 4 km to 14 km). Measured using an optical time domain reflectometer (OTDR), 1300 nm and 1550 nm wavelength windows	
Spectral attenuation of single mode fibre Service Reference: OT06-1060	0.1 dB to 35 dB	0.021 dB	Cut-back technique Wavelength range 1200 nm to 1650 nm Measurements carried out over the temperature range 18 °C to 23 °C.	

Assessment Manager: JG2 Page 64 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
FIBRE OPTICS (continued) Spectral attenuation of multimode fibre Service Reference: OT06-1060	0.1 dB to 35 dB	0.020 dB	Cut-back technique Wavelength range 800 nm to 900 nm 1250 nm to 1350 nm Measurements carried out over the temperature range 18 °C to 23 °C.	
Cut-off wavelength of optical fibre and cable Service Reference: OT06-1070 Fibre optic test equipment Service Reference: OT02-1010	800 nm to 1600 nm	2.0 nm	Transmitted power technique Measurements carried out over the temperature range 18 °C to 23 °C. Measurements carried out at 20 °C ± 2 °C, unless otherwise stated.	
Absolute responsivity of fibre optic power meters with FC/PC connectors	Power level: -10 dBm to +23 dBm 850 nm ± 30 nm 1300 nm ± 25 nm	0.90 % 0.70 %	Minimum customer meter resolution 2 % of stated power levels. Multimode fibre	Teddington
	980 nm ± 10 nm 1300 nm ± 25 nm 1500 nm ± 30 nm 1550 nm ± 20 nm 1620 nm ± 20 nm	0.90 % 0.70 % 0.80 % 0.70 % 0.70 %	Single mode fibre	ngton
Absolute responsivity of fibre optic power meters with SC/PC connectors	Power level: -10 dBm to +23 dBm 850 nm ± 30 nm 980 nm ± 10 nm 1300 nm ± 25 nm	1.5 % 1.5 % 1.0 %	Minimum customer meter resolution 2 % of stated power levels Multimode fibre Single mode fibre Single mode and multi mode fibre	
	Power level: -10 dBm to +23 dBm 1500 nm ± 30 nm 1550 nm ± 20 nm 1620 nm ± 20 nm	1.0 % 1.0 % 1.0 %	Minimum customer meter resolution 2 % of stated power levels. Single mode fibre	
Absolute responsivity of fibre optic power meters with FC/APC or SC/APC connectors	Power level: -10 dBm to +23 dBm 1500 nm ± 30 nm 1550 nm ± 20 nm 1620 nm ± 20 nm	1.6 % 1.6 % 1.6 %	Minimum customer meter resolution 2 % of stated power levels Single mode fibre	

Assessment Manager: JG2 Page 65 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
Fibre optic test equipment (co	ntinued)			
Linearity in fibre optic power meters with FC/PC, SC/PC, FC/APC and SC/APC connectors - Comparison technique	+20 dBm to +10 dBm +10 dBm to -90 dBm	0.70 % 0.30 %	Wavelength range: 830 nm to 1620 nm Single mode and multi mode fibre	
Linearity in fibre optic power meters with FC/PC, SC/PC, FC/APC and SC/APC connectors - Superposition technique	+15 dBm to -90 dBm	0.050 %	Wavelength range: 1275 nm to 1640 nm Single mode fibre	
Effective centre wavelength of fibre optic light source with spectral line width <5 nm	800 nm to 1700 nm	0.30 nm	FC/PC connectorised fibre output	
Effective centre wavelength of fibre optic light source with spectral line width in the range 5 nm to 50 nm	800 nm to 1700 nm	1.2 nm	FC/PC connectorised fibre output	Tedd
Spectral line width (FWHM) of sources	0.07 nm to 50 nm	0.10 nm	800 nm to 1700 nm	Teddington
Output power stability of fibre optic light sources	+10 dBm to -50 dBm	0.0040 dB	Wavelength range 800 nm to 1700 nm	
PARTICLE COUNTERS Service Reference: QE15- 1010				
Airborne particle number concentration				
Calibration factor for condensation particle counters	Concentration range 1000 cm ⁻³ to 100,000 cm ⁻³	5.0 %	Comparison with an aerosol electrometer	
Airborne particle charge concentration:				
Detection efficiency (η) for Faraday Cup Aerosol Electrometers	0.15 fC.cm ⁻³ to 3.00 fC.cm ⁻³	3 %	Documented in-house procedure TECHPRO0063.	

Assessment Manager: JG2 Page 66 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
INSTRUMENTS FOR AIR QU Service Reference: QE85- 0000 Particulate analyser flow rate test	JALITY MONITORING 1 slm to 10 slm 10 slm to 40 slm	1.5 % 2.0 %		Customers' sites
END				

Assessment Manager: JG2 Page 67 of 68

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

NPL Management Ltd

Issue No: 141 Issue date: 05 December 2024

Calibration performed by the Organisation at the locations specified

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Assessment Manager: JG2 Page 68 of 68