### **Schedule of Accreditation**

issued by

### **United Kingdom Accreditation Service**

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK



5710

Accredited to ISO 17034:2016

### EffecTech Limited

Issue No: 006 Issue date: 16 January 2025

Dove House Contact: Steve Price

Dove Fields Tel: +44 (0)1889 569229

Uttoxeter E-Mail: steve.price@effectech.co.uk
Staffordshire Website: www.effectech.co.uk

Stattordshire Website: www.effectech.co.uk

### Reference material production at the above address

#### **DETAIL OF ACCREDITATION**

| Matrix / Artefact                 | Property Value(s) / Identity /<br>Characterisation Range |                            | Characterisation Procedure /<br>Technique                                      | Type*<br>(CRM /<br>RM) |
|-----------------------------------|----------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------|------------------------|
| SYNTHETIC NATURAL<br>GAS MIXTURES | amount fraction                                          | (% mol/mol)<br>(0.1 to 22) | Production of Certified<br>Reference Materials to in<br>house method PR039 and | CRM                    |
|                                   | carbon dioxide                                           | (0.05 to 15)               | value assignment by in house                                                   |                        |
|                                   | methane                                                  | (34 to 100)                | method TM001/UT                                                                |                        |
|                                   | ethane                                                   | (0.1 to 35)                |                                                                                |                        |
|                                   | propane                                                  | (0.05 to 15)               |                                                                                |                        |
|                                   | iso-butane                                               | (0.01 to 2)                |                                                                                |                        |
|                                   | n-butane                                                 | (0.01 to 2)                |                                                                                |                        |
|                                   | neo-pentane                                              | (0.002 to 0.35)            |                                                                                |                        |
|                                   | iso-pentane                                              | (0.005 to 0.35)            |                                                                                |                        |
|                                   | n-pentane                                                | (0.005 to 0.35)            |                                                                                |                        |
|                                   | n-hexane                                                 | (0.001 to 0.35)            |                                                                                |                        |
|                                   | 2-methylpentane                                          | (0.001 to 0.35)            |                                                                                |                        |
|                                   | 3-methylpentane                                          | (0.001 to 0.35)            |                                                                                |                        |
|                                   | 2,2-dimethylbutane                                       | (0.001 to 0.35)            |                                                                                |                        |
|                                   | benzene                                                  | (0.001 to 0.2)             |                                                                                |                        |
|                                   | cyclohexane                                              | (0.001 to 0.2)             |                                                                                |                        |
|                                   | n-heptane                                                | (0.001 to 0.2)             |                                                                                |                        |
|                                   | toluene                                                  | (0.001 to 0.1)             |                                                                                |                        |
|                                   | methylcyclohexane                                        | (0.001 to 0.1)             |                                                                                |                        |
|                                   | n-octane                                                 | (0.0005 to 0.05)           |                                                                                |                        |
|                                   | n-nonane                                                 | (0.0005 to 0.02)           |                                                                                |                        |
|                                   | n-decane                                                 | (0.0005 to 0.005)          |                                                                                |                        |
|                                   | helium                                                   | (0.005 to 0.2)             |                                                                                |                        |
|                                   | hydrogen                                                 | (0.05 to 20)               |                                                                                |                        |
|                                   | oxygen                                                   | (0.05 to 3)                |                                                                                |                        |
|                                   |                                                          |                            |                                                                                |                        |
|                                   |                                                          |                            |                                                                                |                        |

Assessment Manager: CA2 Page 1 of 5



# Accredited to ISO 17034:2016

### **Schedule of Accreditation** issued by

## United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

### EffecTech Limited

Issue No: 006 Issue date: 16 January 2025

### Reference material production performed at the main address only

| Matrix / Artefact                             | Property Value(s) / Identity /<br>Characterisation Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | Characterisation Procedure /<br>Technique                                                                                                                                                                                                                 | Type*<br>(CRM /<br>RM) |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| SYNTHETIC NATURAL<br>GAS MIXTURES<br>(cont'd) | amount fraction oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (% mol/mol)<br>(0.001 to 22.5) | Production of Certified<br>Reference Materials to in<br>house method PR039 and<br>value assignment by in house<br>method TM026/UT                                                                                                                         | CRM                    |
|                                               | superior calorific value molar basis (kJ.mol <sup>-1</sup> ) mass basis (MJ.kg <sup>-1</sup> ) volume basis (MJ.m <sup>-3</sup> ) inferior calorific value molar basis (kJ.mol <sup>-1</sup> ) mass basis (MJ.kg <sup>-1</sup> ) volume basis (MJ.m <sup>-3</sup> ) relative density density (kg.m <sup>-3</sup> ) superior Wobbe index (Minferior Wobbe index ( | )<br>MJ.m <sup>-3</sup> )      | Values calculated by ISO 6976:1995 (including amendment No 1, May 1998) on a <i>real</i> or <i>ideal</i> gas basis assuming mixture is dry (free from water)  Combustion properties can be expressed in units of the Joule (J) or in kilowatt hours (kWh) | CRM                    |
|                                               | gross calorific value molar basis (kJ.mol <sup>-1</sup> ) mass basis (MJ.kg <sup>-1</sup> ) volume basis (MJ.m <sup>-3</sup> ) net calorific value molar basis (kJ.mol <sup>-1</sup> ) mass basis (MJ.kg <sup>-1</sup> ) volume basis (MJ.m <sup>-3</sup> ) relative density density (kg.m <sup>-3</sup> ) gross Wobbe index (MJ.m twobbe index (MJ.m molar mass (kg.kmol <sup>-1</sup> ) compression factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .m <sup>-3</sup> )             | Values calculated by ISO 6976:2016 on a real or ideal gas basis assuming mixture is dry (free from water)  Combustion properties can be expressed in units of the Joule (J) or in kilowatt hours (kWh)                                                    | CRM                    |

Assessment Manager: CA2 Page 2 of 5



### Accredited to ISO 17034:2016

## Schedule of Accreditation issued by

## United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

### EffecTech Limited

Issue No: 006 Issue date: 16 January 2025

### Reference material production performed at the main address only

| Matrix / Artefact                             | Property Value(s) / Identity /<br>Characterisation Range                                          |             | Characterisation Procedure / Technique                                                                               | Type*<br>(CRM /<br>RM) |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------|------------------------|
| SYNTHETIC NATURAL<br>GAS MIXTURES<br>(cont'd) | gross heating value<br>net heating value<br>relative density<br>compressibility factor            |             | Values calculated by methods<br>given in <b>GPA 2172-19</b> (2019)<br>using data tables from<br><b>GPA 2145-16</b>   | CRM                    |
|                                               | gross heating value<br>net heating value<br>relative density<br>density<br>compressibility factor |             | Values calculated by methods<br>given in <b>ASTM D3588-98</b><br>(2017) using data tables from<br><b>GPA 2145-16</b> | CRM                    |
| SULPHUR GAS                                   | amount fraction                                                                                   | (µmol/mol)  | Production of Certified                                                                                              | CRM                    |
| MIXTURES                                      | hydrogen sulphide                                                                                 | (0.2 to 10) | Reference Materials to in house method PR039 and                                                                     |                        |
|                                               | carbonyl sulphide                                                                                 | (0.2 to 10) | value assignment by in house                                                                                         |                        |
|                                               | methanethiol<br>(methyl mercaptan)                                                                | (0.2 to 10) | method TM002/UT                                                                                                      |                        |
|                                               | ethanethiol<br>(ethyl mercaptan)                                                                  | (0.2 to 10) |                                                                                                                      |                        |
|                                               | dimethyl sulphide                                                                                 | (0.2 to 10) |                                                                                                                      |                        |
|                                               | 1-propanethiol (n-propyl mercaptan)                                                               | (0.2 to 10) |                                                                                                                      |                        |
|                                               | 2-propanethiol (iso-propyl mercaptan)                                                             | (0.2 to 10) |                                                                                                                      |                        |
|                                               | ethyl methyl sulphide<br>(methyl ethyl sulphide)                                                  | (0.2 to 10) |                                                                                                                      |                        |
|                                               | 1-butanethiol<br>(n-butyl mercaptan)                                                              | (0.2 to 10) |                                                                                                                      |                        |
|                                               | 2-methyl-2-propanethiol (tert-butyl mercaptan)                                                    | (0.2 to 10) |                                                                                                                      |                        |
|                                               | 2-methyl-1-propanethiol (iso-butyl mercaptan)                                                     | (0.2 to 10) |                                                                                                                      |                        |
|                                               | 1-methyl-1-propanethiol (sec-butyl mercaptan)                                                     | (0.2 to 10) |                                                                                                                      |                        |
|                                               | diethyl sulphide                                                                                  | (0.2 to 10) |                                                                                                                      |                        |
|                                               | n-hexyl mercaptan                                                                                 | (0.2 to 10) |                                                                                                                      |                        |
|                                               | tetrahydrothiophene<br>(THT)                                                                      | (0.2 to 10) |                                                                                                                      |                        |
|                                               |                                                                                                   |             |                                                                                                                      |                        |

Assessment Manager: CA2 Page 3 of 5



## Schedule of Accreditation issued by

## United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

### EffecTech Limited

Issue No: 006 Issue date: 16 January 2025

Reference material production performed at the main address only

| Matrix / Artefact               | Property Value(s) / Identity /<br>Characterisation Range |                     | Characterisation Procedure /<br>Technique                                                                                      | Type*<br>(CRM /<br>RM) |
|---------------------------------|----------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|
| BINARY EMISSION<br>GAS MIXTURES | amount fraction                                          | (% mol/mol)         | Production of Certified<br>Reference Materials to in<br>house method PR039 and<br>value assignment by in house<br>method TM014 | CRM                    |
|                                 | oxygen<br>in nitrogen                                    | (0.5 to 25)         |                                                                                                                                |                        |
|                                 | methane<br>in nitrogen                                   | (0.1 to 5)          |                                                                                                                                |                        |
|                                 | methane<br>in synthetic air                              | (0.1 to 2.5)        |                                                                                                                                |                        |
|                                 | amount fraction                                          | (µmol/mol)          | Production of Certified Reference Materials to in                                                                              | CRM                    |
|                                 | carbon monoxide in nitrogen or synthetic a               | (10 to 1000)<br>iir | house method PR039 and value assignment by in house method TM014                                                               |                        |
|                                 | nitric oxide in nitrogen                                 | (10 to 600)         |                                                                                                                                |                        |
|                                 | nitrogen dioxide in synthetic air                        | (5 to 500)          |                                                                                                                                |                        |
|                                 | sulphur dioxide<br>in nitrogen or synthetic a            | (10 to 1000)<br>iir |                                                                                                                                |                        |
| BINARY EMISSION<br>GAS MIXTURES | amount fraction                                          | (% mol/mol)         | Production of Certified Reference Materials to in                                                                              | CRM                    |
|                                 | carbon dioxide (0.1 to 15) in nitrogen or synthetic air  |                     | house method PR039 and value assignment by in house method TM025                                                               |                        |
|                                 | amount fraction                                          | (µmol/mol)          | Production of Certified Reference Materials to in                                                                              | CRM                    |
|                                 | propane (3 to 100 in nitrogen or synthetic air           |                     | house method PR039 and value assignment by in house method TM025                                                               |                        |
|                                 | amount fraction                                          | (% mol/mol)         | Production of Certified Reference Materials to in                                                                              | CRM                    |
|                                 | oxygen<br>in nitrogen                                    | (0.001 to 22.5)     | house method PR039 and value assignment by in house method TM026/UT                                                            |                        |
|                                 |                                                          | END                 |                                                                                                                                |                        |

Assessment Manager: CA2 Page 4 of 5



5710 Accredited to ISO 17034:2016

# Schedule of Accreditation issued by ed Kingdom Accreditation Service

United Kingdom Accreditation Service
2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

### EffecTech Limited

Issue No: 006 Issue date: 16 January 2025

Reference material production performed at the main address only

### \* Type

CRM = Certified Reference Material(s) RM = Reference Material(s)

Refer to ISO 17034 for full definitions

Assessment Manager: CA2 Page 5 of 5